首页> 外文期刊>Journal of Global Optimization >MiKM: multi-step inertial Krasnosel'skii-Mann algorithm and its applications
【24h】

MiKM: multi-step inertial Krasnosel'skii-Mann algorithm and its applications

机译:MiKM:多步惯性Krasnosel'skii-Mann算法及其应用

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we first introduce a multi-step inertial Krasnosel'skii-Mann algorithm (MiKM) for nonexpansive operators in real Hilbert spaces. We give the convergence of the MiKM by investigating the convergence of the Krasnosel'skii-Mann algorithm with perturbations. We also establish global pointwise and ergodic iteration complexity bounds of the Krasnosel'skii-Mann algorithm with perturbations. Based on the MiKM, we construct some multi-step inertial splitting methods, including the multi-step inertial Douglas-Rachford splitting method (MiDRS), the multi-step inertial forward-backward splitting method, multi-step inertial backward-forward splitting method and and the multi-step inertial Davis-Yin splitting method. Numerical experiments are provided to illustrate the advantage of the MiDRS over the one-step inertial DRS and the original DRS.
机译:在本文中,我们首先为实际希尔伯特空间中的非膨胀算子引入了多步惯性Krasnosel'skii-Mann算法(MiKM)。我们通过研究带有扰动的Krasnosel'skii-Mann算法的收敛性来给出MiKM的收敛性。我们还建立了带有扰动的Krasnosel'skii-Mann算法的全局逐点和遍历遍历迭代复杂性边界。在MiKM的基础上,构造了多步惯性分裂方法,包括多步惯性道格拉斯-拉赫福德分裂方法(MiDRS),多步惯性正反向分裂方法,多步惯性正向分裂方法以及多步惯性戴维斯-阴分裂方法。提供数值实验以说明MiDRS优于单步惯性DRS和原始DRS的优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号