首页> 外文期刊>Journal of Global Optimization >A sensitive-eigenvector based global algorithm for quadratically constrained quadratic programming
【24h】

A sensitive-eigenvector based global algorithm for quadratically constrained quadratic programming

机译:二次约束二次规划的基于敏感特征向量的全局算法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we design an eigenvalue decomposition based branch-and-bound algorithm for finding global solutions of quadratically constrained quadratic programming (QCQP) problems. The hardness of nonconvex QCQP problems roots in the nonconvex components of quadratic terms, which are represented by the negative eigenvalues and the corresponding eigenvectors in the eigenvalue decomposition. For certain types of QCQP problems, only very few eigenvectors, defined as sensitive-eigenvectors, determine the relaxation gaps. We propose a semidefinite relaxation based branch-and-bound algorithm to solve QCQP. The proposed algorithm, which branches on the directions of the sensitive-eigenvectors, is very efficient for solving certain types of QCQP problems.
机译:在本文中,我们设计了一种基于特征值分解的分支定界算法,以寻找二次约束二次规划(QCQP)问题的整体解。非凸QCQP问题的硬度源于二次项的非凸分量,其由特征值分解中的负特征值和相应特征向量表示。对于某些类型的QCQP问题,只有极少的特征向量(定义为敏感特征向量)确定松弛间隙。我们提出了一种基于半定松弛的分支定界算法来求解QCQP。所提出的算法在敏感特征向量的方向上分支,对于解决某些类型的QCQP问题非常有效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号