首页> 外文期刊>Journal of Global Optimization >Variational Analysis of the Abscissa Mapping for Polynomials via the Gauss-Lucas Theorem
【24h】

Variational Analysis of the Abscissa Mapping for Polynomials via the Gauss-Lucas Theorem

机译:基于高斯-卢卡斯定理的多项式横坐标映射的变分分析

获取原文
获取原文并翻译 | 示例

摘要

Consider the linear space P~n of polynomials of degree n or less over the complex field. The abscissa mapping on P~n is the mapping that takes a polynomial to the maximum real part of its roots. This mapping plays a key role in the study of stability properties for linear systems. Burke and Overton have shown that the abscissa mapping is everywhere subdifferentially regular in the sense of Clarke on the manifold M~n of polynomials of degree n. In addition, they provide a formula for the subdifferential. The result is surprising since the abscissa mapping is not Lipschitzian on M~n. A key supporting lemma uses a proof technique due to Levantovskii for determining the tangent cone to the set of stable polynomials. This proof is arduous and opaque. It is a major obstacle to extending the variational theory to other functions of the roots of polynomials. In this note, we provide an alternative proof based on the Gauss-Lucas Theorem. This new proof is both insightful and elementary.
机译:考虑在复数域上次数为n或更小的多项式的线性空间P〜n。 P_n上的横坐标映射是将多项式取为其根的最大实部的映射。该映射在研究线性系统的稳定性方面起着关键作用。伯克(Burke)和欧弗顿(Overton)已经证明,在度数为n的多项式M〜n的流形M〜n上,从Clarke的角度来看,横坐标映射处处都是亚微分规则的。另外,它们提供了次微分的公式。由于横坐标映射不是M_n上的Lipschitzian,因此结果令人惊讶。关键支持引理使用Levantovskii的证明技术来确定与稳定多项式集合的切线锥。这种证明是艰巨和不透明的。这是将变分理论扩展到多项式根的其他函数的主要障碍。在本文中,我们基于高斯-卢卡斯定理提供了另一种证明。此新证明既有见识又很基础。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号