...
首页> 外文期刊>Journal of Geometry >Generalized Line Stars and Topological Parallelisms of the Real Projective 3-Space
【24h】

Generalized Line Stars and Topological Parallelisms of the Real Projective 3-Space

机译:实射3-空间的广义线星和拓扑并行性

获取原文
获取原文并翻译 | 示例
           

摘要

Let Q be an elliptic quadric of the real projective 3-space PG(3, mathbbR{mathbb{R}}) =: Õ3prod_{3} and denote by Q¬i the set of non-interior points with respect to Q. A simple covering mathfrakGmathfrak{G} of Q¬i by 2-secants of Q is called generalized line star with respect to Q. The generalized line star mathfrakGmathfrak{G} is called continuous, if the determination of the unique line of mathfrakGmathfrak{G} through a given point of Q¬i is continuous. A parallelismis a family P of spreads such that each line of Õ3prod_{3} is contained in exactly one spread of P; two lines of Õ3prod_{3} are P-parallel if, and only if, they are members of the same spread of P. The parallelism P is called topological, if the operation of drawing a line P-parallel to a given line through a given point is continuous. In [1] the authors give a construction mathbbP{mathbb{P}} such that mathbbP(mathfrakG){mathbb{P}}(mathfrak{G}) is a parallelism of Õ3prod_{3} ; cf. Theorem 1.4 below. In the present paper the authors prove: If mathfrakGmathfrak{G} is continuous, then mathbbP(mathfrakG){mathbb{P}}(mathfrak{G}) is a topological parallelism of Õ3prod_{3}. The authors construct continuous generalized line stars by composing so-called 3-pencils (cf. Definition 3.3 below). If 프 is a generalized line star of [1, Section 5] or of [2] or from Section 3 of the present paper, then there exists a line A such that each line of 프 has non-empty intersection with A; we speak of an axial generalized line star. In Section 4 examples of non-axial continuous generalized line stars are constructed.
机译:令Q为实投影3空间PG(3,mathbbR {mathbb {R}})=:Õ 3 prod_ {3}的椭圆二次曲面,并由Q ¬i< / sup>相对于Q的非内点集合。Q的2个割线简单覆盖Q ¬i的mathfrakGmathfrak {G}称为关于Q的广义线星。如果通过给定点Q ¬i对mathfrakGmathfrak {G}的唯一线的确定是连续的,则将广义线星mathfrakGmathfrak {G}称为连续。并行度是扩展的族P,使得Õ 3 prod_ {3}的每一行都恰好包含在P的一个扩展中; , 3 prod_ {3}的两条线只有且仅当它们是P的相同扩展的成员时才是P平行的。如果绘制线的操作,则并行性P称为拓扑。 P平行于通过给定点的给定线是连续的。在[1]中,作者给出了一个构造mathbbP {mathbb {P}},使得mathbbP(mathfrakG){mathbb {P}}(mathfrak {G})是Õ 3 prod_ {3的并行性}; cf.定理1.4如下。在本文中,作者证明:如果mathfrakGmathfrak {G}是连续的,则mathbbP(mathfrakG){mathbb {P}}(mathfrak {G})是Õ 3 prod_ {3的拓扑并行性}。作者通过组成所谓的3笔来构造连续的广义线星(参见下面的定义3.3)。如果프是本论文[1,5节]或[2]的广义线星,或者是本文的3节中的广义线星,则存在一条线A,使得프的每条线与A具有非空交点;我们说的是轴向广义线星。在第4节中,构造了非轴向连续广义线星的示例。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号