首页> 外文期刊>Journal of Forest Research >Uncertainty analysis in data processing on the estimation of net carbon exchanges at different forest ecosystems in China
【24h】

Uncertainty analysis in data processing on the estimation of net carbon exchanges at different forest ecosystems in China

机译:中国不同森林生态系统净碳交换量估算数据处理的不确定性分析

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Information about the uncertainties associated with eddy covariance observations of surface-atmosphere CO2 exchange is of importance for model-data fusion in carbon cycling studies and the accurate evaluation of ecosystem carbon budgeting. In this paper, a comprehensive analysis was conducted to investigate the influence of data processing procedures, focusing especially on the nocturnal data correction and three procedures in nonlinear regression method of gap filling [i.e., the selection of respiration model (REM), light-response model (LRM) and parameter optimization criteria (POC)], on the annual net ecosystem CO2 exchange estimation at three forest ecosystems in ChinaFLUX with three yearly datasets for each site. The results showed that uncertainties caused from four methodological uncertainties were between 61 and 108 g C m−2 year−1, with 61–93 g C m−2 year−1 (21–30%) in a temperate mixed forest, 80–107 g C m−2 year−1 (19–21%) in a subtropical evergreen coniferous plantation and 77–108 g C m−2 year−1 (16–19%) in a subtropical evergreen broad-leaved forest. Factorial analysis indicated that the largest uncertainty was associated with the choice of POC in the regression method across all sites in all years, while the influences of the choice of models (i.e., REM and LRM) varied with climate conditions at the measurement station. Furthermore, the uncertainty caused by data processing procedures was of approximately the same magnitude as the interannual variability in the three sites. This result stressed the importance to understand the uncertainty caused by data processing to avoid the introduction of artificial between-year and between-site variability that hampers comparative analysis.
机译:与表面-大气CO2交换涡流协方差观测有关的不确定性信息对于碳循环研究中的模型数据融合以及生态系统碳预算的准确评估具有重要意义。在本文中,进行了全面的分析以研究数据处理程序的影响,特别是针对夜间数据校正和间隙填充的非线性回归方法的三个程序[即呼吸模型(REM)的选择,光响应]模型(LRM)和参数优化标准(POC)],对ChinaFLUX的三个森林生态系统的年度净生态系统CO2交换量估算,每个站点有三个年度数据集。结果表明,由四种方法学不确定性引起的不确定性在61至108 g C m-2 year-1 之间,而在61–93 g C m-2 year-1中。 sup>(21–30%)在温带混交林中,80–107 g C m-2 year-1 (19–21%)在亚热带常绿针叶林和77–108 g亚热带常绿阔叶林中的C m-2 year-1 (16-19%)。因子分析表明,所有年份中所有站点的回归方法中POC的选择都与最大不确定性有关,而模型选择(即REM和LRM)的影响随测量站的气候条件而变化。此外,由数据处理程序引起的不确定性与这三个地点的年际变化幅度大致相同。该结果强调了理解数据处理所带来的不确定性的重要性,以避免引入人为的年间和站点间变异性,这会妨碍比较分析。

著录项

  • 来源
    《Journal of Forest Research》 |2012年第3期|p.312-322|共11页
  • 作者单位

    Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China;

    Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China;

    Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China;

    Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China;

    Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China;

    I;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    ChinaFLUX; Data processing; Eddy covariance; Net carbon exchange; Uncertainty;

    机译:ChinaFLUX数据处理涡动协方差净碳交换不确定度;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号