首页> 外文期刊>Journal of food engineering >Modeling microwave heating of frozen mashed potato in a domestic oven incorporating electromagnetic frequency spectrum
【24h】

Modeling microwave heating of frozen mashed potato in a domestic oven incorporating electromagnetic frequency spectrum

机译:结合电磁频谱对家用烤箱中冷冻马铃薯泥的微波加热进行建模

获取原文
获取原文并翻译 | 示例
       

摘要

Domestic microwave oven magnetrons produce microwaves in a frequency range of 2.45 +/- 0.05 GHz. Most microwave heat transfer simulations simplify that the magnetron produces a monochromatic electromagnetic wave of frequency of 2.45 GHz to reduce the computational complexity. This study assumes that the magnetron produces a frequency spectrum defined by a Gaussian distribution of frequencies with a central frequency of 2.45 GHz and investigates the effect of Gaussian distribution variance of (0.05 GHz)(2), (0.025 GHz)(2), (0.017 GHz)(2) on prediction accuracy when compared to using monochromatic frequency of 2.45 GHz. A three-dimensional finite element model coupling electromagnetic and heat transfer physics was developed to simulate heating of 550 g of frozen mashed potato for 6 min. The model was validated in a 1250 W rated microwave oven with the mashed potato tray placed at the center of the stationary turntable. The electromagnetic power densities were determined separately at five different frequencies equidistant between 2.4 and 2.5 They were then weighted averaged, based on the selected Gaussian distribution. Simulated temperature profiles of the models using the monochromatic frequency of 2.45 GHz and Gaussian frequency spectrum with different variances were compared with experimental temperature profiles obtained using a thermal imaging camera at the end of cooking and five fiber-optic thermocouples during cooking. The model results showed that predicted spatial surface temperature pattern by the model using frequency spectrum with the largest variance (0.05 GHz)2 had better agreement with the experimental temperature pattern when compared to that using a monochromatic frequency of 2.45 GHz. In the transient temperature profile measurement, the average RMSE value of five locations was 7.5 and 13.1 degrees C for simulations using frequency spectrum and monochromatic frequency of 2.45 GHz, respectively. When compared to using the monochromatic frequency of 2.45 GHz, the frequency spectrum with an assumption of having a Gaussian distribution with mean of 2.45 GHz and variance of (0.05 GHz)(2) improved the accuracy of temperature field pattern and transient temperature profile. (C) 2015 Elsevier Ltd. All rights reserved.
机译:家用微波炉的磁控管产生的微波频率范围为2.45 +/- 0.05 GHz。大多数微波传热模拟简化了磁控管产生2.45 GHz频率的单色电磁波以降低计算复杂性的过程。本研究假设磁控管产生一个由中心频率为2.45 GHz的频率的高斯分布定义的频谱,并研究高斯分布方差(0.05 GHz)(2),(0.025 GHz)(2),(与使用2.45 GHz单色频率相比时,预测精度为0.017 GHz)(2)。建立了耦合电磁和传热物理的三维有限元模型,以模拟550克冷冻土豆泥加热6分钟的过程。该模型在额定1250 W的微波炉中进行了验证,并将土豆泥托盘放在固定转盘的中央。在2.4和2.5等距的五个不同频率上分别确定电磁功率密度,然后根据选定的高斯分布对它们进行加权平均。将使用2.45 GHz单色频率和具有不同方差的高斯频谱的模型的模拟温度曲线与在烹饪结束时使用热像仪以及在烹饪过程中使用五个光纤热电偶获得的实验温度曲线进行了比较。模型结果表明,与使用2.45 GHz单色频率的频谱相比,使用最大方差(0.05 GHz)2的频谱模型预测的空间表面温度模式与实验温度模式具有更好的一致性。在瞬态温度曲线测量中,使用频谱和2.45 GHz的单色频率进行仿真时,五个位置的平均RMSE值分别为7.5和13.1摄氏度。与使用2.45 GHz单色频率进行比较时,假设频谱具有高斯分布,平均值为2.45 GHz,并且方差为(0.05 GHz)(2),则可以提高温度场模式和瞬态温度曲线的准确性。 (C)2015 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号