首页> 外文学位 >Multiphysics modeling to enhance understanding of microwave heating of food in domestic ovens.
【24h】

Multiphysics modeling to enhance understanding of microwave heating of food in domestic ovens.

机译:多物理场建模可增强对家用烤箱中食物微波加热的理解。

获取原文
获取原文并翻译 | 示例

摘要

Nonuniform heating is the biggest issue in the microwave heating of prepared meals. Multiphysics based models are promising tools to improve microwave heating uniformity by properly designing the food product. However, limited availability of accurate temperature-dependent material properties, inadequate model prediction accuracy, and high computational power and complexity in model development are three gaps that greatly limited the application of these models in the food industry.;To fill in the gaps, firstly, we developed a multitemperature calibration protocol to measure temperature-dependent dielectric properties (dielectric constant and loss factor). The temperature-dependent dielectric and thermal (thermal conductivity and specific heat capacity) properties of mashed potato and whey protein gel were measured from -20 to 100 °C and were provided as input to the models.;Secondly, a three-dimensional (3-D) finite element model coupling electromagnetic and heat and mass transfer was developed to fully understand the interactions between the microwaves and fresh and frozen mashed potato. Transient point temperatures, spatial surface temperatures, and total moisture loss predicted by the models matched well with the experimental validation. A sensitivity analysis of the effect of input parameters on the model prediction was evaluated in the fresh mashed potato model and found that the gas diffusion coefficient, intrinsic water permeability, and the evaporation rate constant are sensitive parameters that need to be determined accurately. Frequency of updating dielectric properties were evaluated in the frozen mashed potato model and found that dielectric properties can be updated for every rotational cycle without affecting the accuracy.;Finally, these models were further simplified to improve their utility in the microwaveable food development. The simplification of decoupling electromagnetic from heat transfer analysis (use a constant heat source term based on dielectric properties at room temperature) did not affect the predicted temperatures considerably, while reducing the computation time by 93%. A simple 1-D analytical model based on planar wave assumption was developed to determine the thicknesses of multicompartment meals based on the dielectric, thermal, and physical properties, so that two compartments could achieve same heating rate.;These models with different complexity could be used in different stages of microwaveable foods design.
机译:在准备好的食物的微波加热中,不均匀加热是最大的问题。基于多物理场的模型是通过适当设计食品来改善微波加热均匀性的有前途的工具。但是,精确的温度相关材料属性的可用性有限,模型预测精度不足以及模型开发中的高计算能力和复杂性是三个缺陷,这极大地限制了这些模型在食品工业中的应用。 ,我们开发了一种多温度校准协议来测量与温度相关的介电特性(介电常数和损耗因子)。在-20至100°C范围内测量土豆泥和乳清蛋白凝胶的温度相关介电和热(导热率和比热容)特性,并将其作为模型的输入;其次,三维(3 -D)开发了耦合电磁,传热和传质的有限元模型,以充分理解微波与新鲜和冷冻土豆泥之间的相互作用。模型预测的瞬态点温度,空间表面温度和总水分损失与实验验证非常吻合。在新鲜马铃薯泥模型中评估了输入参数对模型预测的影响的敏感性分析,发现气体扩散系数,固有水渗透率和蒸发速率常数是需要准确确定的敏感参数。在冷冻土豆泥模型中评估了介电特性的更新频率,发现介电特性可以在每个旋转周期内更新,而不会影响准确性。最后,进一步简化了这些模型,以提高其在微波食品开发中的效用。简化传热分析中的电磁去耦(使用基于室温下介电特性的恒定热源术语)不会显着影响预测温度,同时将计算时间减少了93%。建立了一个简单的基于平面波假设的一维解析模型,可以根据介电,热和物理性质确定多隔间的厚度,从而使两个隔间可以达到相同的加热速率;这些具有不同复杂度的模型可以是用于微波食品设计的不同阶段。

著录项

  • 作者

    Chen, Jiajia.;

  • 作者单位

    The University of Nebraska - Lincoln.;

  • 授予单位 The University of Nebraska - Lincoln.;
  • 学科 Engineering.;Agricultural engineering.;Food science.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 262 p.
  • 总页数 262
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:52:49

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号