首页> 外文期刊>Journal of Fixed Point Theory and Applications >Blow-up solutions concentrated along minimal submanifolds for some supercritical elliptic problems on Riemannian manifolds
【24h】

Blow-up solutions concentrated along minimal submanifolds for some supercritical elliptic problems on Riemannian manifolds

机译:爆破解沿黎曼流形上的一些超临界椭圆问题集中在最小子流形上

获取原文
获取原文并翻译 | 示例

摘要

Let (M, g) and ({(K, kappa)}) be two Riemannian manifolds of dimensions m and k, respectively. Let ({omega in C^{2} (N), omega > 0}). The warped product ({M times_omega K}) is the (m +  k)-dimensional product manifold ({M times K}) furnished with metric ({g + omega^{2} kappa}) . We prove that the supercritical problem $$- Delta_{g + omega^{2} kappa} u + hu = u^{frac{m+2}{m-2} pm varepsilon} ,quad u > 0,quad {rm in},, (M times_{omega} K, g + omega^{2} kappa)$$has a solution concentrated along a k-dimensional minimal submanifold ({Gamma}) of ({M times_{omega } N}) as the real parameter ({varepsilon}) goes to zero, provided the function h and the sectional curvatures along ({Gamma}) satisfy a suitable condition. Mathematics Subject Classification 35B10 35B33 35J08 58J05 Keywords Supercritical problem concentration along minimal submanifold To Yvonne Choquet-Bruhat
机译:令(M,g)和({{(K,kappa)})分别是尺寸为m和k的两个黎曼流形。设({omega in C ^ {2}(N),omega> 0})。扭曲的乘积({M times_omega K})是(m + k)维乘积流形({M×K}),配有度量({g + omega ^ {2} kappa})。我们证明超临界问题$$-Delta_ {g + omega ^ {2} kappa} u + hu = u ^ {frac {m + 2} {m-2} pm varepsilon},u u> 0,quad {rm in},(M times_ {omega} K,g + omega ^ {2} kappa)$$具有沿着({M times_ {omega} N})的k维最小子流形({Gamma})集中的解。如果函数h和沿({Gamma})的截面曲率满足合适的条件,则当实参({varepsilon})变为零时。数学主题分类35B10 35B33 35J08 58J05关键词沿着最小子流形的超临界问题集中于伊冯·乔奎特-布鲁特

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号