首页> 外文期刊>Journal of Field Robotics >Registration of three-dimensional scanning LiDAR sensors: An evaluation of model-based and model-free methods
【24h】

Registration of three-dimensional scanning LiDAR sensors: An evaluation of model-based and model-free methods

机译:三维扫描LiDAR传感器的配准:基于模型和无模型方法的评估

获取原文
获取原文并翻译 | 示例

摘要

Registration, also know as extrinsic calibration, is the process of determining the position and orientation of a sensor relative to a known frame of reference. For ranging sensors such as light detection and ranging (LiDAR) used in field robotic applications, the quality of the registration determines the utility of the range measurements. This paper makes two contributions. The first is the introduction of a new method, termed maximum sum of evidence (MSoE) for registering three-dimensional LiDAR sensors to moving platforms. This method is shown to produce more accurate registration solutions than two leading methods for these sensors, the adaptive structure registration filter (ASRF) and Renyi quadratic entropy (RQE). The second contribution of the paper is to study the accuracy of the MSoE registration against these two other approaches. One of these, like the MSoE, requires a truth model of the environment. The other, a model-free method, seeks the registration that minimizes the RQE of a compound point cloud. The main finding of this investigation is that while the model-based methods prove more accurate than the model-free approach, the results of all three methods are fit for their intended field robotic applications. This leads us to conclude that registration based on RQE is preferable in many, if not all, field robotic applications for reasons of convenience, since a truth model of the environment is not required.
机译:配准,也称为外部校准,是确定传感器相对于已知参考系的位置和方向的过程。对于现场机器人应用中使用的测距传感器,例如光检测和测距(LiDAR),配准的质量决定了测距的实用性。本文有两个贡献。首先是引入一种新方法,称为最大证据总和(MSoE),用于将三维LiDAR传感器注册到移动平台。与两种领先的传感器传感器自适应结构配准滤波器(ASRF)和Renyi二次熵(RQE)相比,该方法显示出更准确的配准解决方案。本文的第二个贡献是针对这两种其他方法研究了MSoE注册的准确性。其中之一,例如MSoE,需要环境的真实模型。另一种是无模型方法,它寻求使复合点云的RQE最小化的配准。这项研究的主要发现是,尽管基于模型的方法比无模型方法更准确,但所有这三种方法的结果都适合其预期的现场机器人应用。这使我们得出结论,出于方便的原因,基于RQE的注册在许多(即使不是全部)现场机器人应用中更可取,因为不需要环境的真实模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号