首页> 外文期刊>Journal of Robotic Systems >Fixed-Wing Attitude Estimation Using Temporal Tracking of the Horizon and Optical Flow
【24h】

Fixed-Wing Attitude Estimation Using Temporal Tracking of the Horizon and Optical Flow

机译:使用地平线和光流的时间跟踪的固定翼姿态估计

获取原文
获取原文并翻译 | 示例
           

摘要

A method has been developed for estimating pitch angle, roll angle, and aircraft body rates based on horizon detection and temporal tracking using a forward-looking camera, without assistance from other sensors. Using an image processing front end, we select several lines in an image that may or may not correspond to the true horizon. The optical flow at each candidate line is calculated, which may be used to measure the body rates of the aircraft. Using an extended Kalman filter (EKF), the aircraft state is propagated using a motion model and a candidate horizon line is associated using a statistical test based on the optical flow measurements and the location of the horizon. Once associated, the selected horizon line, along with the associated optical flow, is used as a measurement to the EKF. To test the accuracy of the algorithm, two flights were conducted, one using a highly dynamic uninhabited airborne vehicle (UAV) in clear flight conditions and the other in a human-piloted Cessna 172 in conditions in which the horizon was partially obscured by terrain, haze, and smoke. The UAV flight resulted in pitch and roll error standard deviations of 0.42 and 0.71 deg, respectively, when compared with a truth attitude source. The Cessna flight resulted in pitch and roll error standard deviations of 1.79 and 1.75 deg, respectively. The benefits of selecting and tracking the horizon using a motion model and optical flow rather than naively relying on the image processing front end are demonstrated.
机译:已经开发了一种方法,用于基于地平线检测和使用前瞻性相机的时间跟踪来估计俯仰角,侧倾角和飞机机体速率,而无需其他传感器的协助。使用图像处理前端,我们在图像中选择了可能与真实地平线相对应的几条线。计算每条候选线的光流,可将其用于测量飞机的机体速率。使用扩展的卡尔曼滤波器(EKF),可以使用运动模型传播飞机状态,并使用基于光流测量值和地平线位置的统计测试来关联候选地平线。一旦关联,选定的水平线以及关联的光流将用作EKF的度量。为了测试该算法的准确性,进行了两次飞行,一次是在晴朗的飞行条件下使用高动态无人驾驶飞机(UAV),另一次是在人为驾驶的塞斯纳172飞机上,其中地平线被地形部分遮挡,阴霾和烟雾。与真实姿态源相比,无人机飞行的俯仰和侧倾误差标准偏差分别为0.42和0.71度。塞斯纳飞行产生的俯仰和侧倾误差标准偏差分别为1.79度和1.75度。演示了使用运动模型和光流而不是天真的依赖于图像处理前端来选择和跟踪地平线的好处。

著录项

  • 来源
    《Journal of Robotic Systems》 |2011年第3期|p.355-372|共18页
  • 作者单位

    Australian Research Centre for Aerospace Automation, Queensland University of Technology, Brisbane, Australia;

    Australian Research Centre for Aerospace Automation, Queensland University of Technology, Brisbane, Australia;

    Australian Research Centre for Aerospace Automation, Queensland University of Technology, Brisbane, Australia;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号