首页> 外文期刊>Journal of Experimental & Theoretical Artificial Intelligence >Effective plan retrieval in case-based planning for metric-temporal problems
【24h】

Effective plan retrieval in case-based planning for metric-temporal problems

机译:在基于案例的度量-时间问题计划中有效的计划检索

获取原文
获取原文并翻译 | 示例

摘要

Case-based planning (CBP) is an approach to planning where previous planning experience stored in a case base provides guidance to solving new problems. Such a guidance can be extremely useful when the new problem is very hard to solve, or the stored previous experience is highly valuable (because, e.g. it was provided and/or validated by human experts) and the system should try to reuse it as much as possible. In this work, we address CBP in PDDL domains with real-valued fluents, action durations and timed-initial literals, which are essential to model real-world planning problems involving continuous resources and temporal constraints. We propose some new heuristic techniques for retrieving a plan from a library of existing plans that is promising for solving a new planning problem encountered by the CBP system, i.e. that can be efficiently adapted to solve the new problem. The effectiveness of these techniques, which derive much of their power from the proposed use of the numerical/temporal information in the planning problem specification and in the library plans, is evaluated through an experimental analysis.
机译:基于案例的计划(CBP)是一种计划方法,其中,案例库中存储的先前计划经验可为解决新问题提供指导。当新问题很难解决,或者所存储的先前经验非常有价值时(例如,由人工提供和/或验证),这样的指导可能会非常有用,并且系统应尽量重用它尽可能。在这项工作中,我们使用具有实际价值的流利性,动作持续时间和定时初始文字来解决PDDL域中的CBP,这对于建模涉及连续资源和时间限制的现实计划问题至关重要。我们提出了一些用于从现有计划库中检索计划的新启发式技术,这些技术有望解决CBP系统遇到的新计划问题,即可以有效地解决新问题的方法。这些技术的有效性是通过实验分析来评估的,这些技术的有效性来自规划问题规范和图书馆计划中所建议的数字/时间信息的使用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号