首页> 外文期刊>Journal of experimental algorithmics >Hyperbolic Embeddings for Near-Optimal Greedy Routing
【24h】

Hyperbolic Embeddings for Near-Optimal Greedy Routing

机译:用于近乎最佳贪婪路由的双曲线嵌入

获取原文
获取原文并翻译 | 示例

摘要

Greedy routing computes paths between nodes in a network by successively moving to the neighbor closestto the target with respect to coordinates given by an embedding into some metric space. Its advantage is thatonly local information is used for routing decisions. We present different algorithms for generating graphembeddings into the hyperbolic plane that are well suited for greedy routing. In particular, our embeddingsguarantee that greedy routing always succeeds in reaching the target, and we try to minimize the lengths ofthe resulting greedy paths.We evaluate our algorithm on multiple generated and real-world networks. For networks that are generallyassumed to have a hidden underlying hyperbolic geometry, such as the Internet graph [3], we achievenear-optimal results (i.e., the resulting greedy paths are only slightly longer than the corresponding shortestpaths). In the case of the Internet graph, they are only 6% longer when using our best algorithm, whichgreatly improves upon the previous best known embedding, whose creation required substantial manualintervention.In addition to measuring the stretch, we empirically evaluate our algorithms regarding the size of thecoordinates of the resulting embeddings and observe how it impacts the success rate when coordinates arenot represented with very high precision. Since numerical difficulties are a major issue when performingcomputations in the hyperbolic plane, we consider variations of our algorithm that improve the success ratewhen using coordinates with lower precision.
机译:通过连续移动到最接近的邻居,贪婪路由计算网络中节点之间的路径对于嵌入到某些公制空间给出的坐标的目标。它的优势是只有本地信息用于路由决策。我们为生成图表提供了不同的算法嵌入到适合贪婪路由的双曲线平面中。特别是我们的嵌入式保证贪婪路由始终成功到达目标,我们试图最大限度地减少长度由此产生的贪婪路径。我们在多个生成和真实网络上评估我们的算法。对于一般的网络假设具有隐藏的底层双曲性几何形状,例如互联网图[3],我们实现了近乎最佳结果(即,由此产生的贪婪路径仅略高于相应的最短最短路径)。在互联网图的情况下,使用我们的最佳算法时,它们只有6%更长时间大大提高了以前最着名的嵌入,其创造需要大量手册干涉。除了测量延伸外,我们还经验估计我们的算法有关的算法由此产生的嵌入的坐标并观察它在坐标时如何影响成功率没有用非常高的精度表示。由于数值困难是在执行时的主要问题双曲线中的计算,我们考虑了提高成功率的算法的变化使用具有较低精度的坐标时。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号