首页> 外文期刊>Journal of Environmental Management >Optimization of LiNO_3-Mg(OH)_2 composites as thermo-chemical energy storage materials
【24h】

Optimization of LiNO_3-Mg(OH)_2 composites as thermo-chemical energy storage materials

机译:LiNO_3-Mg(OH)_2复合材料作为热化学储能材料的优化

获取原文
获取原文并翻译 | 示例
       

摘要

To reduce the emission of greenhouse gases, the substitution of fossil fuel by renewable energy sources is increasingly important. Matching energy supply and demand is however required, even more so if intermittent renewable energy sources are employed. Thermal energy storage then offers significant advantages. Thermo-chemical energy storage systems, using reversible reactions, have a high reaction enthalpy that exceeds the storage capacities of sensible and latent heat modes. Magnesium hydroxide is a candidate TCES material for such a system at temperature around 300 ℃, and adaptable when doping Mg(OH)_2 with metal salts. Both pure Mg(OH)_2 and its composites with 1, 3, 6 and 10 wt % LiNO_3 are studied. The present work validates this TCES process and develops reaction rate equations needed for its design. The LiNO_3.doping significantly reduces the onset temperature of dehydration. For pure Mg(OH)_2, the temperature is 325 ℃. It is reduced to 289 ℃ when 1 wt% LiNO_3 is present, and further reduced to 269 ℃ at a dosage of 10 wt% LiNO_3. Whereas the dehydration of pure Mg(OH)_2 is slow, with a rate constant k of 1.72 10~(-5) s~(-1) at 300 ℃, adding increasing amounts of LiNO_3 progressively increases the reaction rate constant to ~10~(-2) s~(-1) at 300 ℃ when 10 wt% LiNO_3 is present. The kinetic expressions enable to predict the conversion yield and amount of heat stored or released for any desired temperature and selected duration of the heat-induced dehydration. LiNO_3. doped Mg(OH)_2 have a high potential in TCES applications when the heat source is available at temperatures between 250 and 400 ℃, since the equilibrium temperature and the extent of dehydration Mg(OH)_2 can be tuned to the required temperature range by adding different wt% of LiNO_3.
机译:为了减少温室气体的排放,用可再生能源替代化石燃料变得越来越重要。但是,需要匹配能源的供需,如果采用间歇性可再生能源,则更是如此。然后,热能存储具有明显的优势。使用可逆反应的热化学能量存储系统具有很高的反应焓,超过了显热模式和潜热模式的存储容量。氢氧化镁是在300℃左右的温度下用于该系统的候选TCES材料,并且在用金属盐掺杂Mg(OH)_2时具有适应性。研究了纯Mg(OH)_2及其具有1,3%,6%和10 wt%LiNO_3的复合材料。本工作验证了该TCES工艺并开发了其设计所需的反应速率方程。 LiNO_3掺杂显着降低了脱水的起始温度。对于纯Mg(OH)_2,温度为325℃。当存在1 wt%LiNO_3时,温度降低至289℃,并以10 wt%LiNO_3的剂量进一步降低至269℃。纯Mg(OH)_2的脱水较慢,在300℃下的速率常数k为1.72 10〜(-5)s〜(-1),随着LiNO_3含量的增加,反应速率常数逐渐增加至〜10 LiNO_3含量为10 wt%时,在300℃时〜(-2)s〜(-1)。动力学表达式能够预测转化率以及在任何所需温度和热诱导脱水的选定持续时间内存储或释放的热量。 LiNO_3。当热源温度在250到400℃之间时,掺杂的Mg(OH)_2可能在TCES应用中具有很高的潜力,因为平衡温度和脱水Mg(OH)_2的程度可以通过以下方法调节到所需的温度范围:添加不同重量%的LiNO_3。

著录项

  • 来源
    《Journal of Environmental Management》 |2020年第may15期|110258.1-110258.7|共7页
  • 作者单位

    College of Life Science and Technology Beijing University of Chemical Technology 15# Beisanhuan East Road Chaoyang District Beijing 100029 PR China;

    College of Life Science and Technology Beijing University of Chemical Technology 15# Beisanhuan East Road Chaoyang District Beijing 100029 PR China Beijing Advanced Innovation Center for Soft Matter Science and Engineering Beijing University of Chemical Technology 15# Beisanhuan East Road Chaoyang District Beijing 100029 PR China;

  • 收录信息 美国《科学引文索引》(SCI);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Thermo-chemical energy storage; Magnesium hydroxide; Lithium nitrate; Composites; Waste and solar heat storage;

    机译:热化学储能;氢氧化镁;硝酸锂;复合材料;废物和太阳能储热;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号