首页> 外文期刊>Journal of Engineering for Gas Turbines and Power >Optimization of Wall Cooling in Gas Turbine Combustor Through Three-Dimensional Numerical Simulation
【24h】

Optimization of Wall Cooling in Gas Turbine Combustor Through Three-Dimensional Numerical Simulation

机译:三维数值模拟优化燃气轮机燃烧室壁冷

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

This paper is concerned with improving the prediction reliability of CFD modeling of gas turbine combustors. CFD modeling of gas turbine combustors has recently become an important tool in the combustor design process, which till now routinely used the old "cut and try" design practice. Improving the prediction capabilities and reliability of CFD methods will reduce the cycle time between idea and a working product. The paper presents a 3D numerical simulation of the BSE Ltd. YT-175 engine combustor, a small, annular, reversal flow type combustor. The entire flow field is modeled, from the compressor diffuser to turbine inlet. The model includes the fuel nozzle, the vaporizer solid walls, and liner solid walls with the dilution holes and cooling louvers. A periodic 36 deg sector of the combustor is modeled using a hybrid structured/unstructured multiblock grid. The time averaged Navier-Stokes (N-S) equations are solved, using the k- turbulence model and the combined time scale (COMTIME)/PPDF models for modeling the turbulent kinetic energy reaction rate. The vaporizer and liner walls' temperature is predicted by the "conjugate heat transfer" methodology, based on simultaneous solution of the heat transfer equations for the vaporizer and liner walls, coupled with the N-S equations for the fluids. The calculated results for the mass flux passing through the vaporizer and various holes and slots of the liner walls, as well as the jet angle emerging from the liner dilution holes, are in very good agreement with experimental measurements. The predicted location of the liner wall hot spots agrees well with the position of deformations and cracks that occurred in the liner walls during test runs of the combustor. The CFD was used to modify the YT-175 combustion chamber to eliminate structural problems, caused by the liner walls overheating, that were observed during its development.
机译:本文关注于提高燃气轮机燃烧器CFD建模的预测可靠性。燃气轮机燃烧器的CFD建模近来已成为燃烧器设计过程中的重要工具,迄今为止,该程序通常使用旧的“尝试”设计实践。提高CFD方法的预测能力和可靠性将减少从构思到实际产品之间的周期时间。本文介绍了BSE Ltd. YT-175发动机燃烧器(小型,环形,逆流式燃烧器)的3D数值模拟。从压缩机扩压器到涡轮进口,整个流场都经过建模。该模型包括燃料喷嘴,汽化器实心壁和带有稀释孔和冷却百叶窗的衬里实心壁。使用混合结构化/非结构化多块网格对燃烧器的周期性36度扇形进行建模。使用k湍流模型和组合时间尺度(COMTIME)/ PPDF模型对湍动能反应速率进行建模,从而解决了时间平均Navier-Stokes(N-S)方程。汽化器和衬管壁的温度是通过“共轭传热”方法预测的,该方法基于汽化器和衬管壁的热交换方程式与流体的N-S方程式的同时求解。通过蒸发器和衬管壁的各种孔和槽的质量通量的计算结果,以及从衬管稀释孔出现的喷射角,与实验测量值非常吻合。衬管壁热点的预测位置与燃烧器测试运行期间衬管壁中发生的变形和裂纹的位置非常吻合。 CFD用于修改YT-175燃烧室,以消除在其开发过程中观察到的由衬套壁过热引起的结构问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号