首页> 外文期刊>Journal of Engineering for Gas Turbines and Power >Gas Turbine Engine Durability Impacts of High Fuel-Air Ratio Combustors: Near Wall Reaction Effects on Film-Cooled Backward-Facing Step Heat Transfer
【24h】

Gas Turbine Engine Durability Impacts of High Fuel-Air Ratio Combustors: Near Wall Reaction Effects on Film-Cooled Backward-Facing Step Heat Transfer

机译:燃气/空燃比高的燃烧室对燃气轮机耐久性的影响:薄膜冷却后向阶梯式换热的近壁反应效应

获取原文
           

摘要

As commercial and military aircraft engines approach higher total temperatures and increasing overall fuel-to-air ratios, the potential for significant chemical reactions to occur downstream of the combustor is increased. This may take place when partially reacted species leave the combustor and encounter film-cooled surfaces. One common feature on turbine endwalls is a step between various engine components and seals. Such step features produce recirculating flows which when in the vicinity of film-cooled surfaces may lead to particularly severe reaction zones due to long fluid residence times. The objective of this paper is to study and quantify the surface heat transfer implications of such reacting regions. A shock tube experiment was employed to generate short duration, high temperature (1000-2800 K) and pressure (6 atm) flows over a film-cooled backward-facing step. The test article contained two sets of 35 deg film cooling holes located downstream of a step. The film-cooling holes could be supplied with different gases, one side using air and the other nitrogen allowing for simultaneous testing of reacting and inert cooling gases. A mixture of ethylene and argon provided a fuel-rich free stream that reacted with the air film resulting in near wall reactions. The relative increase in surface heat flux due to near wall reactions was investigated over a range of fuel levels, momentum blowing ratios (0.5-2.0), and Damkoehler numbers (ratio of characteristic flow time to chemical time) from near zero to 30. The experimental results show that for conditions relevant for future engine technology, adiabatic flame temperatures can be approached along the wall downstream of the step leading to potentially significant increases in surface heat flux. A computational study was also performed to investigate the effects of cooling-jet blowing ratio on chemical reactions behind the film-cooled step. The blowing ratio was found to be an important parameter governing the flow structure behind the backward-facing step, and controlling the characteristics of chemical-reactions by altering the local equivalence ratio.
机译:随着商用和军用飞机发动机接近更高的总温度并增加总的燃料空气比,在燃烧器下游发生重大化学反应的可能性增加了。当部分反应的物质离开燃烧室并遇到薄膜冷却的表面时,可能会发生这种情况。涡轮机端壁的一个共同特征是各种发动机部件和密封件之间的台阶。这样的台阶特征产生再循环流,当其在膜冷却的表面附近时,由于长的流体停留时间而可能导致特别严重的反应区。本文的目的是研究和量化此类反应区域的表面传热含义。进行了激波管实验,以产生短时间的高温(1000-2800 K)和压力(6 atm)在薄膜冷却的后向步骤中流动。测试制品包含位于台阶下游的两组35度薄膜冷却孔。可以为薄膜冷却孔提供不同的气体,一侧使用空气,另一侧使用氮气,以便同时测试反应性和惰性冷却气体。乙烯和氩气的混合物提供了富含燃料的自由流,该自由流与气膜反应,导致近壁反应。研究了在接近零到30的一系列燃料水平,动量喷射比(0.5-2.0)和Damkoehler数(特征流动时间与化学时间的比)范围内,由于近壁反应引起的表面热通量的相对增加。实验结果表明,对于与未来发动机技术相关的条件,可以在台阶下游的壁上达到绝热火焰温度,从而可能导致表面热通量显着增加。还进行了计算研究,以研究冷却喷吹比对薄膜冷却步骤后的化学反应的影响。发现吹风比是控制后向步骤后的流动结构并通过改变局部当量比来控制化学反应特性的重要参数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号