首页> 外文期刊>Journal of electrical and computer engineering >Binary Large Object-Based Approach for QR Code Detection in Uncontrolled Environments
【24h】

Binary Large Object-Based Approach for QR Code Detection in Uncontrolled Environments

机译:非受控环境中基于二进制大型对象的QR码检测方法

获取原文
获取原文并翻译 | 示例

摘要

Quick Response QR barcode detection in nonarbitrary environment is still a challenging task despite many existing applications for finding 2D symbols. The main disadvantage of recent applications for QR code detection is a low performance for rotated and distorted single or multiple symbols in images with variable illumination and presence of noise. In this paper, a particular solution for QR code detection in uncontrolled environments is presented. The proposal consists in recognizing geometrical features of QR code using a binary large object- (BLOB-) based algorithm with subsequent iterative filtering QR symbol position detection patterns that do not require complex processing and training of classifiers frequendy used for these purposes. The high precision and speed are achieved by adaptive threshold binarization of integral images. In contrast to well-known scanners, which fail to detect QR code with medium to strong blurring, significant nonuniform illumination, considerable symbol deformations, and noising, the proposed technique provides high recognition rate of 80%-100% with a speed compatible to real-time applications. In particular, speed varies from 200 ms to 800 ms per single or multiple QR code detected simultaneously in images with resolution from 640 x 480 to 4080 x 2720, respectively.
机译:快速响应QR条形码检测在任意环境下仍然是一项艰巨的任务,尽管目前已有许多用于查找2D符号的应用程序。 QR码检测的最新应用的主要缺点是在具有可变照明和噪声存在的图像中旋转和失真的单个或多个符号的性能较低。本文提出了一种在不受控制的环境中检测QR码的特殊解决方案。该建议在于使用基于二进制大对象(BLOB)的算法识别QR码的几何特征,并使用随后的迭代过滤QR符号位置检测模式,这些模式不需要复杂的处理和训练用于这些目的的分类器。通过对积分图像进行自适应阈值二值化来实现高精度和高速度。与众所周知的扫描器无法检测到具有中等到强烈的模糊,严重的不均匀照明,显着的符号变形和噪点的QR码相比,所提出的技术提供了80%-100%的高识别率,并且速度与真实图像兼容。时间应用程序。特别是,在分辨率从640 x 480到4080 x 2720的图像中同时检测到的单个或多个QR码,速度从200 ms到800 ms不等。

著录项

  • 来源
    《Journal of electrical and computer engineering》 |2017年第2期|4613628.1-4613628.15|共15页
  • 作者单位

    Department of Computing, Electronics and Mechatronics, University de las Americas Puebla, 72810 San Andres Cholula, PUE, Mexico;

    Department of Computing, Electronics and Mechatronics, University de las Americas Puebla, 72810 San Andres Cholula, PUE, Mexico;

    Department of Computing, Electronics and Mechatronics, University de las Americas Puebla, 72810 San Andres Cholula, PUE, Mexico;

    Department of Computing, Electronics and Mechatronics, University de las Americas Puebla, 72810 San Andres Cholula, PUE, Mexico;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号