首页> 外文期刊>Expert systems with applications >BinDeep: A deep learning approach to binary code similarity detection
【24h】

BinDeep: A deep learning approach to binary code similarity detection

机译:BINDEEP:二进制代码相似性检测的深度学习方法

获取原文
获取原文并翻译 | 示例

摘要

Binary code similarity detection (BCSD) plays an important role in malware analysis and vulnerability discovery. Existing methods mainly rely on the expert's knowledge for the BCSD, which may not be reliable in some cases. More importantly, the detection accuracy (or performance) of these methods are not so satisfied. To address these issues, we propose BinDeep, a deep learning approach for binary code similarity detection. This method firstly extracts the instruction sequence from the binary function and then uses the instruction embedding model to vectorize the instruction features. Next, BinDeep applies a Recurrent Neural Network (RNN) deep learning model to identify the specific types of two functions for later comparison. According to the type information, BinDeep selects the corresponding deep learning model for similarity comparison. Specifically, BinDeep uses the Siamese neural networks, which combine the LSTM and CNN to measure the similarities of two target functions. Different from the traditional deep learning model, our hybrid model takes advantage of the CNN spatial structure learning and the LSTM sequence learning. The evaluation shows that our approach can achieve good BCSD between cross-architecture, cross-compiler, cross-optimization, and cross-version binary code.
机译:二进制代码相似性检测(BCSD)在恶意软件分析和漏洞发现中扮演重要角色。现有方法主要依赖于专家对BCSD的知识,在某些情况下可能不可能可靠。更重要的是,这些方法的检测精度(或性能)并不满足。为了解决这些问题,我们提出Bordeep,是二进制代码相似性检测的深度学习方法。该方法首先从二进制函数中提取指令序列,然后使用指令嵌入模型向矢量化指令特征。接下来,BINDEEP应用经常性的神经网络(RNN)深度学习模型,以识别稍后比较的两个功能的特定类型。根据类型的信息,BINDEEP选择相应的相似性比较的相应深度学习模型。具体而言,BINDEEP使用暹罗神经网络,该神经网络组合了LSTM和CNN来测量两个目标功能的相似性。不同于传统的深度学习模式,我们的混合模型利用了CNN空间结构学习和LSTM序列学习。评估表明,我们的方法可以在跨架构,交叉编译,交叉优化和跨版二进制代码之间实现良好的BCSD。

著录项

  • 来源
    《Expert systems with applications》 |2021年第4期|114348.1-114348.9|共9页
  • 作者单位

    Beijing Inst Technol Beijing Key Lab Software Secur Engn Tech Beijing 100081 Peoples R China|North Univ China Shanxi Mil & Civilian Integrat Software Engn Tech Taiyuan 030051 Peoples R China;

    Chinese Acad Sci Inst Informat Engn Key Lab Network Assessment Technol Beijing 100093 Peoples R China;

    Beijing Inst Technol Beijing Key Lab Software Secur Engn Tech Beijing 100081 Peoples R China;

    Beijing Inst Technol Beijing Key Lab Software Secur Engn Tech Beijing 100081 Peoples R China;

    Beijing Inst Technol Beijing Key Lab Software Secur Engn Tech Beijing 100081 Peoples R China;

    Beijing Inst Technol Beijing Key Lab Software Secur Engn Tech Beijing 100081 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Binary code; Deep learning; Similarity comparison; Siamese neural network; LSTM; CNN;

    机译:二进制编码;深度学习;相似性比较;暹罗神经网络;LSTM;CNN;
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号