首页> 外文期刊>Journal of electrical and computer engineering >Detecting and Identifying Industrial Gases by a Method Based on Olfactory Machine at Different Concentrations
【24h】

Detecting and Identifying Industrial Gases by a Method Based on Olfactory Machine at Different Concentrations

机译:基于嗅觉机的不同浓度工业气体检测与识别方法

获取原文
获取原文并翻译 | 示例

摘要

Gas sensors have been widely reported for industrial gas detection and monitoring. However, the rapid detection and identification of industrial gases are still a challenge. In this work, we measure four typical industrial gases including CO2, CH4> NH3, and volatile organic compounds (VOCs) based on electronic nose (EN) at different concentrations. To solve the problem of effective classification and identification of different industrial gases, we propose an algorithm based on the selective local linear embedding (SLLE) to reduce the dimensionality and extract the features of high-dimensional data. Combining the Euclidean distance (ED) formula with the proposed algorithm, we can achieve better classification and identification of four kinds of gases. We compared the classification and recognition results of classical principal component analysis (PCA), linear discriminate analysis (LDA), and PCA + LDA algorithms with the proposed SLLE algorithm after selecting the original data and performing feature extraction. The experimental results show that the recognition accuracy rate of the SLLE reaches 91.36%, which is better than the other three algorithms. In addition, the SLLE algorithm provides more efficient and accurate responses to high-dimensional industrial gas data. It can be used in real-time industrial gas detection and monitoring combined with gas sensor networks.
机译:气体传感器已被广泛报道用于工业气体检测和监测。但是,快速检测和识别工业气体仍然是一个挑战。在这项工作中,我们基于不同浓度的电子鼻(EN)测量了四种典型的工业气​​体,包括CO2,CH4> NH3和挥发性有机化合物(VOC)。为了解决对不同工业气体的有效分类和识别问题,提出了一种基于选择性局部线性嵌入(SLLE)的算法,以减少维数并提取高维数据的特征。将欧氏距离(ED)公式与所提出的算法相结合,可以更好地对四种气体进行分类和识别。在选择原始数据并进行特征提取之后,我们将经典主成分分析(PCA),线性判别分析(LDA)和PCA + LDA算法的分类和识别结果与提出的SLLE算法进行了比较。实验结果表明,SLLE算法的识别准确率达到91.36%,优于其他三种算法。此外,SLLE算法可对高维工业气体数据提供更有效,更准确的响应。结合气体传感器网络可用于实时工业气体检测和监测。

著录项

  • 来源
    《Journal of electrical and computer engineering》 |2018年第1期|1092718.1-1092718.9|共9页
  • 作者单位

    School of Information and Engineering, Guangdong University of Technology, Guangzhou 510006, China;

    School of Information and Engineering, Guangdong University of Technology, Guangzhou 510006, China;

    School of Information and Engineering, Guangdong University of Technology, Guangzhou 510006, China;

    School of Information and Engineering, Guangdong University of Technology, Guangzhou 510006, China;

    School of Information and Engineering, Guangdong University of Technology, Guangzhou 510006, China;

    Department of Electrical and Electronic Engineering, Auckland University of Technology, Auckland, New Zealand;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号