首页> 外文期刊>Journal of Dynamic Systems, Measurement, and Control >Lithium-Ion Battery State of Charge and Critical Surface Charge Estimation Using an Electrochemical Model-Based Extended Kalman Filter
【24h】

Lithium-Ion Battery State of Charge and Critical Surface Charge Estimation Using an Electrochemical Model-Based Extended Kalman Filter

机译:锂离子电池的充电状态和基于电化学模型的扩展卡尔曼滤波器的临界表面电荷估计

获取原文
获取原文并翻译 | 示例
           

摘要

This paper presents a numerical calculation of the evolution of the spatially resolvednsolid concentration in the two electrodes of a lithium-ion cell. The microscopic solidnconcentration is driven by the macroscopic Butler–Volmer current density distribution,nwhich is consequently driven by the applied current through the boundary conditions. Thenresulting, mostly causal, implementation of the algebraic differential equations that describenthe battery electrochemical principles, even after assuming fixed electrolyte concentration,nis of high order and complexity and is denoted as the full order model. Thenfull order model is compared with the results in the works of Smith and Wang (2006,n“Solid-State Diffusion Limitations on Pulse Operation of a Lithium-Ion Cell for HybridnElectric Vehicles,” J. Power Sources, 161, pp. 628–639) and Wang et al. (2007 “Controlnoriented 1D Electrochemical Model of Lithium Ion Battery,” Energy Convers. Manage.,n48, pp. 2565–2578) and creates our baseline model, which will be further simplified forncharge estimation. We then propose a low order extended Kalman filter for the estimationnof the average-electrode charge similarly to the single-particle charge estimation in thenwork of White and Santhanagopalan (2006, “Online Estimation of the State of Charge ofna Lithium Ion Cell,” J. Power Sources, 161, pp. 1346–1355) with the following twonsubstantial enhancements. First, we estimate the average-electrode, or single-particle,nsolid-electrolyte surface concentration, called critical surface charge in addition to thenmore traditional bulk concentration called state of charge. Moreover, we avoid thenweakly observable conditions associated with estimating both electrode concentrationsnby recognizing that the measured cell voltage depends on the difference, and not thenabsolute value, of the two electrode open circuit voltages. The estimation results of thenreduced, single, averaged electrode model are compared with the full order modelnsimulation.
机译:本文提出了锂离子电池两个电极中空间分辨的固体浓度变化的数值计算。微观固体浓度是由宏观的巴特勒-沃尔默电流密度分布驱动的,因此,它由边界条件下施加的电流驱动。然后,即使假设电解质浓度固定后,代数微分方程的描述结果(主要是因果关系)的实现,也能描述电池的电化学原理,具有很高的阶次和复杂度,并被表示为全阶模型。然后,将全阶模型与Smith和Wang(2006,n“混合动力电动汽车锂离子电池的脉冲操作的固态扩散限制”)的结果进行比较,J。Power Sources,161,第628页。 639)和Wang等。 (2007年,“锂离子电池的可控定向一维电化学模型”,Energy Convers.Manage。,n48,第2565–2578页),并创建了我们的基线模型,该模型将进一步简化电荷估算。然后,我们提出了一种低阶扩展卡尔曼滤波器,用于与White和Santhanagopalan(2006,“锂离子电池荷电状态的在线估计”,J。 Powers,161,pp。1346–1355)具有以下两个实质性增强。首先,我们估计平均电极或单颗粒固体电解质的表面浓度,称为临界表面电荷,然后再估算更传统的体积浓度,称为荷电状态。此外,通过识别测得的电池电压取决于两个电极开路电压的差而不是绝对值,我们避免了与估计两个电极浓度有关的弱可观察条件。然后将还原后的单一平均电极模型的估计结果与全阶模型仿真进行比较。

著录项

  • 来源
  • 作者单位

    Domenico Di DomenicoInstitut Français du Pétrole (IFP),IFP Energies Nouvelles,Rond-Point de l’échangeur de Solaize,B.P. 3,69360 Solaize, Lyon, Francee-mail: didomend@ifp.frAnna StefanopoulouDepartment of Mechanical Engineering,University of Michigan,Ann Arbor, MI 48109-2121e-mail: annastef@umich.eduGiovanni FiengoDipartimento di Ingegneria,Università degli Studi del Sannio,Piazza Roma 21,82100 Benevento, Italye-mail: gifiengo@unisannio.it;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号