首页> 外文期刊>Journal on Data Semantics >Online Reasoning for Semantic Error Detection in Text
【24h】

Online Reasoning for Semantic Error Detection in Text

机译:文本中语义错误检测的在线推理

获取原文
获取原文并翻译 | 示例

摘要

Identifying incorrect content (i.e., semantic error) in text is a difficult task because of the ambiguous nature of written natural language and the many factors that can make a statement semantically erroneous. Current methods identify semantic errors in a sentence by determining whether it contradicts the domain to which the sentence belongs. However, because these methods are constructed on expected logic contradictions, they cannot handle new or unexpected semantic errors. In this paper, we propose a new method for detecting semantic errors that is based on logic reasoning. Our proposed method converts text into logic clauses, which are later analyzed against a domain ontology by an automatic reasoner to determine its consistency. This approach can provide a complete analysis of the text, since it can analyze a single sentence or sets of multiple sentences. When there are multiple sentences to analyze, in order to avoid the high complexity of reasoning over a large set of logic clauses, we propose rules that reduce the set of sentences to analyze, based on the logic relationships between sentences. In our evaluation, we have found that our proposed method can identify a significant percentage of semantic errors and, in the case of multiple sentences, it does so without significant computational cost. We have also found that both the quality of the information extraction output and modeling elements of the ontology (i.e., property domain and range) affect the capability of detecting errors.
机译:由于书面自然语言的模棱两可的性质以及许多可能使陈述产生语义错误的因素,因此识别文本中的不正确内容(即语义错误)是一项艰巨的任务。当前的方法通过确定句子中是否与句子所属的域相矛盾来识别句子中的语义错误。但是,由于这些方法是基于预期的逻辑矛盾构建的,因此它们无法处理新的或意外的语义错误。在本文中,我们提出了一种基于逻辑推理的检测语义错误的新方法。我们提出的方法将文本转换为逻辑子句,然后由自动推理器针对领域本体对其进行分析,以确定其一致性。这种方法可以提供文本的完整分析,因为它可以分析单个句子或多个句子的集合。当要分析多个句子时,为了避免对大量逻辑子句进行推理的高复杂性,我们基于句子之间的逻辑关系,提出了减少要分析的句子集的规则。在我们的评估中,我们发现我们提出的方法可以识别很大比例的语义错误,并且在有多个句子的情况下,它可以识别大量的计算量。我们还发现,信息提取输出的质量和本体的建模元素(即,属性域和范围)都影响检测错误的能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号