首页> 外文期刊>Journal of dairy science >Growth and gas production of a novel obligatory heterofermentative Cheddar cheese nonstarter lactobacilli species on ribose and galactose
【24h】

Growth and gas production of a novel obligatory heterofermentative Cheddar cheese nonstarter lactobacilli species on ribose and galactose

机译:新型必不可少的切达干酪非发酵乳杆菌在核糖和半乳糖上的生长和产气

获取原文
获取原文并翻译 | 示例
       

摘要

An obligatory heterofermentative lactic acid bacterium, Lactobacillus wasatchii sp. nov., isolated from gassy Cheddar cheese was studied for growth, gas formation, salt tolerance, and survival against pasteurization treatments at 63℃ and 72℃. Initially, Lb. wasatchii was thought to use only ribose as a sugar source and we were interested in whether it could also utilize galactose. We conducted experiments to determine the rate and extent of growth and gas production in carbohydrate-restricted (CR) de Man. Rogosa. and Sharpe (MRS) medium under anaerobic conditions with various combinations of ribose and galactose at 12, 23, and 37℃, with 23℃ being the optimum growth temperature of Lb. wasatchii among the 3 temperatures studied. When Lb. wasatchii was grown on ribose (0.1, 0.5, and 1%), maximum specific growth rates (μ_(max)) within each temperature were similar. When galactose was the only sugar, compared with ribose, μ_(max) was 2 to 4 times lower. At all temperatures, the highest final cell densities (optical density at 640 nm) of Lb. wasatchii were achieved in CR-MRS plus 1% ribose, 0.5% ribose and 0.5% galactose, or 1% ribose and 1% galactose. Similar μ_(max) values and final cell densities were achieved when 50% of the ribose in CR-MRS was substituted with galactose. Such enhanced utilization of galactose in the presence of ribose to support bacterial growth has not previously been reported. It appears that Lb. wasatchii co-metabolizes ribose and galactose, utilizing ribose for energy and galactose for other functions such as cell wall biosynthesis. Co-utilization of both sugars could be an adaptation mechanism of Lb. wasatchii to the cheese environment to efficiently ferment available sugars for maximizing metabolism and growth. As expected, gas formation by the heterofermenter was observed only when galactose was present in the medium. Growth experiments with MRS plus 1.5% ribose at pH 5.2 or 6.5 with 0, 1, 2, 3, 4, or 5% NaCl revealed that Lb. wasatchii is able to grow under salt and pH conditions typical of Cheddar cheese (4 to 5% salt-in-moisture, pH ~5.2). Finally, we found that Lb. wasatchii cannot survive low-temperature, long-time pasteurization but survives high-temperature, short-time (HTST) laboratory pasteurization, under which a 4.5 log reduction occurred. The ability of Lb. wasatchii to survive HTST pasteurization and grow under cheese ripening conditions implies that the presence of this nonstarter lactic acid bacterium can be a serious contributor to gas formation and textural defects in Cheddar cheese.
机译:必不可少的异乳酸发酵细菌,乳酸杆菌wasatchii sp。 11月,从高气切达干酪分离,研究了其在63℃和72℃下的生长,气体形成,耐盐性和耐巴氏灭菌处理的存活率。最初是Lb。有人认为wasatchii仅使用核糖作为糖源,我们对它是否也可以利用半乳糖感兴趣。我们进行了实验以确定碳水化合物限制(CR)de Man的生长速度和程度以及产气量。罗戈萨。在12、23和37℃下,核糖和半乳糖的各种组合在厌氧条件下使用Sharpe(MRS)培养基,其中23℃是Lb的最佳生长温度。 wasatchii是所研究的3个温度中的一个。当磅。 wasatchii在核糖(0.1%,0.5%和1%)上生长,每个温度下的最大比生长速率(μ_(max))相似。当半乳糖是唯一的糖时,与核糖相比,μ_(max)低2至4倍。在所有温度下,Lb的最终细胞密度最高(640 nm处的光密度)。在1%核糖,0.5%核糖和0.5%半乳糖或1%核糖和1%半乳糖的CR-MRS中获得了wasatchii。当CR-MRS中50%的核糖被半乳糖取代时,获得了相似的μ(max)值和最终细胞密度。以前没有报道过在核糖存在下半乳糖对细菌生长的这种增强利用。看来是Lb。 wasatchii共同代谢核糖和半乳糖,利用核糖提供能量,半乳糖提供其他功能,例如细胞壁生物合成。两种糖的共同利用可能是Lb的适应机制。将wasatchii置于奶酪环境中,以有效地发酵可用糖,以最大程度地促进代谢和生长。如预期的那样,仅当培养基中存在半乳糖时,才能观察到异源发酵剂形成的气体。用MRS加1.5%核糖在pH 5.2或6.5下用0、1、2、3、4或5%NaCl进行的生长实验表明Lb. wasatchii能够在切达干酪的典型盐和pH条件下(水分为4至5%的盐,pH约为5.2)生长。最后,我们发现了Lb。 wasatchii不能在低温长时间巴氏灭菌中幸存,但可以在高温短期(HTST)实验室巴氏灭菌中幸存下来,在这种情况下发生4.5 log的减少。 Lb的能力。 wasatchii能够经受HTST巴氏杀菌并在奶酪成熟条件下生长,这表明这种非发酵乳酸菌的存在可能是切达干酪中气体形成和质地缺陷的重要原因。

著录项

  • 来源
    《Journal of dairy science》 |2015年第6期|3645-3654|共10页
  • 作者单位

    Western Dairy Center, Department of Nutrition, Dietetics, and Food Sciences, Utah State University, Logan 84322-8700;

    Western Dairy Center, Department of Nutrition, Dietetics, and Food Sciences, Utah State University, Logan 84322-8700;

    Western Dairy Center, Department of Nutrition, Dietetics, and Food Sciences, Utah State University, Logan 84322-8700,Microbiology Department, Weber State University, Ogden, UT 84408-2506;

    Western Dairy Center, Department of Nutrition, Dietetics, and Food Sciences, Utah State University, Logan 84322-8700;

  • 收录信息 美国《科学引文索引》(SCI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    nonstarter lactic acid bacteria; late blowing; ribose; cofermentation;

    机译:非发酵乳酸菌;晚吹核糖合作;
  • 入库时间 2022-08-17 23:23:38

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号