...
首页> 外文期刊>Journal of Crystal Growth >The effects of AlN buffer on the properties of InN epitaxial films grown on Si(111) by plasma-assisted molecular-beam epitaxy
【24h】

The effects of AlN buffer on the properties of InN epitaxial films grown on Si(111) by plasma-assisted molecular-beam epitaxy

机译:AlN缓冲液对等离子体辅助分子束外延在Si(111)上生长InN外延膜性能的影响

获取原文
获取原文并翻译 | 示例

摘要

By using a new double-buffer-layer (AlN/Si3N4) technique. wurtzite-type InN(0 0 0 1) epitaxial films have been grown on Si(1 1 1) substrates by nitrogen-plasma-assisted molecular beam epitaxy. In this technique, a single crystal Si3N4 layer (commensurately matched to the (1 1 1) face of silicon) is used as a diffusion barrier to prevent intermixing and autodoping effects. And, the AlN(0 0 0 1) layer is used to form a 9:8 commensurate heterointerface with InN(0 0 0 1) despite a large difference in lattice constants. In this paper, we focus on the effects of the AlN buffer in terms of crystalline structure, optical, and electrical properties of grown InN epitaxial films. In addition to the use of the AlN buffer layer, the two-stage growth process (the growth of low-temperature (similar to 340 degrees C) InN epilayer prior to the growth of the high-temperature (similar to 520 degrees C) InN epilayer) was also Found to be very important to obtain high-quality InN films. By using the AlN/Si3N4 double buffer, InN-on-Si epitaxial films can be grown with high structural and optical properties. This was confirmed by reflection high-energy electron diffraction, X-ray diffraction, scanning electron microscopy, atomic force microscopy, and room-temperature photoluminescence. Furthermore, room-temperature Hall effect measurements indicate that increasing AlN buffer thickness leads to higher electron mobility and lower n-type carrier concentration in the InN epilayers, very important for electronic device applications. (c) 2005 Elsevier B.V. All rights reserved.
机译:通过使用新的双缓冲层(AlN / Si3N4)技术。纤锌矿型InN(0 0 0 1)外延膜已通过氮等离子体辅助分子束外延生长在Si(1 1 1)衬底上。在此技术中,单晶Si3N4层(与硅的(1 1 1)面相称)匹配用作扩散势垒,以防止混合和自动掺杂效应。并且,尽管晶格常数相差很大,AlN(0 0 0 1)层仍可与InN(0 0 0 1)形成9:8的对应异质界面。在本文中,我们重点关注AlN缓冲液在生长的InN外延膜的晶体结构,光学和电学性质方面的影响。除了使用AlN缓冲层外,还包括两阶段生长过程(在高温(类似于520摄氏度)之前先生长低温(约340摄氏度)InN外延层)还发现外延层对获得高质量的InN膜非常重要。通过使用AlN / Si3N4双缓冲层,可以生长具有高结构和光学特性的InN-on-Si外延膜。这通过反射高能电子衍射,X射线衍射,扫描电子显微镜,原子力显微镜和室温光致发光来确认。此外,室温霍尔效应测量表明,增加AlN缓冲层厚度会导致InN外延层中更高的电子迁移率和更低的n型载流子浓度,这对于电子设备应用而言非常重要。 (c)2005 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号