首页> 外文期刊>Journal of Computing and Information Technology >Cold-start Problem in Collaborative Recommender Systems: Efficient Methods Based on Ask-to-rate Technique
【24h】

Cold-start Problem in Collaborative Recommender Systems: Efficient Methods Based on Ask-to-rate Technique

机译:协作推荐系统中的冷启动问题:基于问价技术的有效方法

获取原文
获取原文并翻译 | 示例

摘要

To develop a recommender system, the collaborative filtering is the best known approach, which considers the ratings of users who have similar rating profiles or rating patterns. Consistently, it is able to cornpute the similarity of users when there are enough ratings expressed by users. Therefore, a major challenge of the collaborative filtering approach can be how to make recommendations for a new user, that is called cold-start user problem. To solve this problem, there have been proposed a few efficient methods based on ask-to-rate technique in which the profile of a new user is made by integrating information gained from a quick interview. This paper is a review of these proposed methods and how to use the ask-to-rate technique. Consequently, they are categorized into non-adaptive and adaptive methods. Then, each category is analyzed and their methods are compared.
机译:为了开发推荐系统,协作过滤是最著名的方法,该方法考虑具有相似评级配置文件或评级模式的用户的评级。一致地,当用户表达了足够的评分时,它就可以纠正用户的相似性。因此,协作过滤方法的主要挑战可能是如何为新用户提出建议,即冷启动用户问题。为了解决这个问题,已经提出了一些基于询问率技术的有效方法,其中通过整合从快速采访中获得的信息来制作新用户的资料。本文对这些提出的方法以及如何使用问价技术进行了回顾。因此,它们被分为非自适应和自适应方法。然后,分析每个类别并比较它们的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号