首页> 外文期刊>Journal of Computing and Information Science in Engineering >Quantifying Product Favorability and Extracting Notable Product Features Using Large Scale Social Media Data
【24h】

Quantifying Product Favorability and Extracting Notable Product Features Using Large Scale Social Media Data

机译:使用大规模社交媒体数据量化产品的受欢迎程度并提取重要的产品功能

获取原文
获取原文并翻译 | 示例

摘要

Some of the challenges that designers face in getting broad external input from customers during and after product launch include geographic limitations and the need for physical interaction with the design artifact(s). Having to conduct such user-based studies would require huge amounts of time and financial resources. In the past decade, social media has emerged as an increasingly important medium of communication and information sharing. Being able to mine and harness product-relevant knowledge within such a massive, readily accessible collection of data would give designers an alternative way to learn customers' preferences in a timely and cost-effective manner. In this paper, we propose a data mining driven methodology that identifies product features and associated customer opinions favorably received in the market space which can then be integrated into the design of next generation products. Two unique product domains (smartphones and automobiles) are investigated to validate the proposed methodology and establish social media data as a viable source of large scale, heterogeneous data relevant to next generation product design and development. We demonstrate in our case studies that incorporating suggested features into next generation products can result in favorable sentiment from social media users.
机译:设计师在产品发布期间和之后从客户那里获得广泛的外部输入所面临的一些挑战包括地理限制以及与设计工件进行物理交互的需求。必须进行这样的基于用户的研究将需要大量的时间和财力。在过去的十年中,社交媒体已成为一种越来越重要的交流和信息共享媒介。能够在如此大量,易于访问的数据集中挖掘和利用与产品相关的知识,将为设计人员提供一种替代方法,以一种及时且经济高效的方式了解客户的偏好。在本文中,我们提出了一种数据挖掘驱动的方法,该方法可以识别在市场空间中受到好评的产品功能和相关的客户意见,然后将其集成到下一代产品的设计中。对两个独特的产品领域(智能手机和汽车)进行了研究,以验证所提出的方法并建立社交媒体数据,将其作为与下一代产品设计和开发相关的大规模,异构数据的可行来源。我们在案例研究中证明,将建议的功能集成到下一代产品中可能会导致社交媒体用户的青睐。

著录项

  • 来源
    《Journal of Computing and Information Science in Engineering》 |2015年第3期|031003.1-031003.12|共12页
  • 作者单位

    Computer Science and Engineering, Industrial and Manufacturing Engineering, The Pennsylvania State University, University Park, PA 16802;

    Engineering Design and Industrial Engineering, Computer Science and Engineering, The Pennsylvania State University, University Park, PA 16802;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号