首页> 外文期刊>Journal of Computing and Information Science in Engineering >Automated Discovery of Product Feature Inferences Within Large- Scale Implicit Social Media Data
【24h】

Automated Discovery of Product Feature Inferences Within Large- Scale Implicit Social Media Data

机译:在大规模隐式社交媒体数据中自动发现产品功能推断

获取原文
获取原文并翻译 | 示例

摘要

Recently, social media has emerged as an alternative, viable source to extract large-scale, heterogeneous product features in a time and cost-efficient manner. One of the challenges of utilizing social media data to inform product design decisions is the existence of implicit data such as sarcasm, which accounts for 22.75% of social media data, and can potentially create bias in the predictive models that learn from such data sources. For example, if a customer says "I just love waiting all day while this song downloads," an automated product feature extraction model may incorrectly associate a positive sentiment of "love" to the cell phone's ability to download. While traditional text mining techniques are designed to handle well-formed text where product features are explicitly inferred from the combination of words, these tools would fail to process these social messages that include implicit product feature information. In this paper, we propose a method that enables designers to utilize implicit social media data by translating each implicit message into its equivalent explicit form, using the word concurrence network. A case study of Twitter messages that discuss smartphone features is used to validate the proposed method. The results from the experiment not only show that the proposed method improves the interpretability of implicit messages, but also sheds light on potential applications in the design domains where this work could be extended.
机译:近来,社交媒体已经成为一种替代的可行资源,可以以省时省钱的方式提取大规模的异构产品特征。利用社交媒体数据来指导产品设计决策的挑战之一是存在诸如讽刺之类的隐式数据,该数据占社交媒体数据的22.75%,并可能在从此类数据源中学习的预测模型中产生偏差。例如,如果客户说“我只喜欢整天等待这首歌下载,”自动产品功能提取模型可能会错误地将“爱”的积极情绪与手机的下载能力相关联。传统的文本挖掘技术旨在处理格式正确的文本,其中从单词的组合中明确推断出产品功能,但这些工具将无法处理包含隐式产品功能信息的社交消息。在本文中,我们提出了一种方法,该方法使设计人员可以使用单词并发网络将每个隐式消息转换为等效的显式形式,从而利用隐式社交媒体数据。讨论智能手机功能的Twitter消息案例研究用于验证所提出的方法。实验结果表明,该方法不仅提高了隐式消息的可解释性,而且还揭示了可以扩展设计工作的设计领域中的潜在应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号