首页> 外文期刊>Journal of Computing and Information Science in Engineering >Application of Feature-Learning Methods Toward Product Usage Context Identification and Comfort Prediction
【24h】

Application of Feature-Learning Methods Toward Product Usage Context Identification and Comfort Prediction

机译:特征学习方法在产品使用环境识别与舒适性预测中的应用

获取原文
获取原文并翻译 | 示例

摘要

Usage context is considered a critical driving factor for customers' product choices. In addition, physical use of a product (i.e., user-product interaction) dictates a number of customer perceptions (e.g., level of comfort). In the emerging internet of things (IoT), this work hypothesizes that it is possible to understand product usage and level of comfort while it is “in-use” by capturing the user-product interaction data. Mining this data to understand both the usage context and the comfort of the user adds new capabilities to product design. There has been tremendous progress in the field of data analytics, but the application in product design is still nascent. In this work, application of feature-learning methods for the identification of product usage context and level of comfort is demonstrated, where usage context is limited to the activity of the user. A novel generic architecture using foundations in convolutional neural network (CNN) is developed and applied to a walking activity classification using smartphone accelerometer data. Results are compared with feature-based machine learning algorithms (neural network and support vector machines (SVM)) and demonstrate the benefits of using the feature-learning methods over the feature-based machine-learning algorithms. To demonstrate the generic nature of the architecture, an application toward comfort level prediction is presented using force sensor data from a sensor-integrated shoe.
机译:使用上下文被认为是客户选择产品的关键驱动因素。另外,产品的物理使用(即,用户与产品的交互)决定了许多顾客的感觉(例如,舒适度)。在新兴的物联网(IoT)中,这项工作假设可以通过捕获用户产品交互数据来了解产品在“使用中”时的使用情况和舒适度。挖掘这些数据以了解使用环境和用户的舒适度可为产品设计增加新的功能。数据分析领域已经取得了巨大进步,但是产品设计中的应用仍处于新生阶段。在这项工作中,演示了特征学习方法在识别产品使用环境和舒适度方面的应用,其中使用环境仅限于用户的活动。开发了一种使用卷积神经网络(CNN)基础的新型通用架构,并将其应用于使用智能手机加速度计数据的步行活动分类。将结果与基于特征的机器学习算法(神经网络和支持向量机(SVM))进行比较,并证明了使用特征学习方法优于基于特征的机器学习算法的好处。为了演示该体系结构的一般性质,使用来自传感器集成式鞋的力传感器数据介绍了舒适度预测的应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号