首页> 外文期刊>Journal of Computing and Information Science in Engineering >An Efficient Multi-Objective Robust Optimization Method by Sequentially Searching From Nominal Pareto Solutions
【24h】

An Efficient Multi-Objective Robust Optimization Method by Sequentially Searching From Nominal Pareto Solutions

机译:从标称帕累托解决方案顺序搜索有效的多目标鲁棒优化方法

获取原文
获取原文并翻译 | 示例

摘要

Multi-objective optimization problems (MOOPs) with uncertainties are common in engineering design. To find robust Pareto fronts, multi-objective robust optimization (MORO) methods with inner-outer optimization structures usually have high computational complexity, which is a critical issue. Generally, in design problems, robust Pareto solutions lie somewhere closer to nominal Pareto points compared with randomly initialized points. The searching process for robust solutions could be more efficient if starting from nominal Pareto points. We propose a new method sequentially approaching to the robust Pareto front (SARPF) from the nominal Pareto points where MOOPs with uncertainties are solved in two stages. The deterministic optimization problem and robustness metric optimization are solved in the first stage, where nominal Pareto solutions and the robust-most solutions are identified, respectively. In the second stage, a new single-objective robust optimization problem is formulated to find the robust Pareto solutions starting from the nominal Pareto points in the region between the nominal Pareto front and robust-most points. The proposed SARPF method can reduce a significant amount of computational time since the optimization process can be performed in parallel at each stage. Vertex estimation is also applied to approximate the worst-case uncertain parameter values, which can reduce computational efforts further. The global solvers, NSGA-Ⅱ for multi-objective cases and genetic algorithm (GA) for single-objective cases, are used in corresponding optimization processes. Three examples with the comparison with results from the previous method are presented to demonstrate the applicability and efficiency of the proposed method.
机译:具有不确定性的多目标优化问题(MoOPS)在工程设计中很常见。为了找到强大的帕累托前线,具有内外优化结构的多目标鲁棒优化(Moro)方法通常具有高计算复杂性,这是一个关键问题。通常,在设计问题中,与随机初始化点相比,强大的帕累托解决方案尤其位于标称静脉点。如果从标称帕累托点开始,强大的解决方案的搜索过程可能会更有效。我们提出了一种从标称帕累托点顺序接近强大的帕累托前部(SARPF)的新方法,其中在两个阶段中解决了具有不确定性的浪费。确定性优化问题和鲁棒性度量优化在第一阶段求解,其中标称帕累托解决方案和稳健的最稳健的解决方案是识别的。在第二阶段,配制了新的单目标稳健优化问题,以找到从标称帕累托前正常和最强大的点之间的标称静脉点开始的强大的帕累托溶液。所提出的SARPF方法可以减小大量的计算时间,因为可以在每个阶段并联执行优化过程。还应用顶点估计来近似最坏情况不确定参数值,这可以进一步降低计算工作。用于多目标案例和遗传算法(GA)的全球溶剂,用于单目标案例,用于相应的优化过程。提出了与先前方法的结果进行比较的三个例子以证明所提出的方法的适用性和效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号