首页> 外文期刊>Journal of Computing and Information Science in Engineering >Predicting Flexural Strength of Additively Manufactured Continuous Carbon Fiber-Reinforced Polymer Composites Using Machine Learning
【24h】

Predicting Flexural Strength of Additively Manufactured Continuous Carbon Fiber-Reinforced Polymer Composites Using Machine Learning

机译:使用机器学习预测含有连续碳纤维增强聚合物复合材料的弯曲强度

获取原文
获取原文并翻译 | 示例

摘要

Carbon fiber-reinforced polymer (CFRP) composites have been used extensively in the aerospace and automotive industries due to their high strength-to-weight and stiffhess-to-weight ratios. Compared with conventional manufacturing processes for CFRP, additive manufacturing (AM) can facilitate the fabrication of CFRP components with complex structures. While AM offers significant advantages over conventional processes, establishing the structure-property relationships in additively manufactured CFRP remains a challenge because the mechanical properties of additively manufactured CFRP depend on many design parameters. To address this issue, we introduce a data-driven modeling approach that predicts the flexural strength of continuous carbon fiber-reinforced polymers (CCFRP) fabricated by fused deposition modeling (FDM). The predictive model of flexural strength is trained using machine learning and validated on experimental data. The relationship between three structural design factors, including the number of fiber layers, the number of fiber rings as well as polymer infill patterns, and the flexural strength of the CCFRP specimens is quantified.
机译:由于其高强度重量和更强的重量比率,碳纤维增强聚合物(CFRP)复合材料已在航空航天和汽车工业中广泛使用。与CFRP的常规制造方法相比,添加剂制造(AM)可以促进CFRP组分与复杂的结构的制造。虽然AM与常规过程提供了显着的优势,但建立了加剧制造的CFRP中的结构性质关系仍然是一个挑战,因为瘦性地制造的CFRP的机械性能取决于许多设计参数。为了解决这个问题,我们介绍了一种数据驱动的建模方法,其预测由熔融沉积建模(FDM)制造的连续碳纤维增强聚合物(CCFRP)的弯曲强度。使用机器学习训练弯曲强度的预测模型,并在实验数据上验证。三种结构设计因子之间的关系,包括纤维层的数量,光纤环的数量以及聚合物填充图案,以及CCFRP样品的弯曲强度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号