首页> 外文期刊>Journal of Computing and Information Science in Engineering >Visualization Technology and Tool Selection Methods for Solving Adaptive Training Complex Structural-Parametric Synthesis Problems
【24h】

Visualization Technology and Tool Selection Methods for Solving Adaptive Training Complex Structural-Parametric Synthesis Problems

机译:用于解决自适应训练复杂结构参数综合问题的可视化技术和刀具选择方法

获取原文
获取原文并翻译 | 示例

摘要

Our previous work in the field of formalization, modeling, and design of adaptive training complexes (ATCs) revealed the low accuracy of the traditional expert approach to selecting ATC components. The study addresses the practical scientific problem of classifying and selecting visualization tools and technologies for designing ATC. Currently, this is done using highly subjective expert evaluation. Therefore, we develop a methodology for the selection of visualization tools and technologies to reduce the influence of the human factor by applying a set of main criteria for visualization component evaluation. Classification is based on the facet approach. We create an original technique that allows users to formalize the main objects of a technical system needing a training complex. It allows users to correlate these aspects to the visualization components and to group, evaluate, and rank them. Integration time, use-cost and component visualization quality, training quality, and time are important variables in the methodology. The use of lexicographic optimization methods or linear convolution of criteria is proposed to obtain an optimal solution from the final Pareto-set. The proposed component selection method has several advantages, compared with the classical approach: greater objectivity of the obtained estimates, better development, and further software implementation automation. Thus, this method addressed the problem of choosing the components of ATC visualization. The significance of the study is in the development of the original algorithmic and mathematical software for the method of selecting ATC visualization components.
机译:我们以前在适应培训复合体(ATCS)的形式化,建模和设计领域的工作揭示了传统专家方法来选择ATC组件的低准确性。该研究解决了分类和选择设计ATC的可视化工具和技术的实际科学问题。目前,这是使用高主观专家评估完成的。因此,我们开发一种选择可视化工具和技术的方法,以通过应用一组可视化组分评估的主要标准来减少人类因素的影响。分类是基于方面的方法。我们创建了一种原始技术,允许用户正式确定需要培训复杂的技术系统的主要对象。它允许用户将这些方面与可视化组件相关联,并对组,评估和对它们进行排序。集成时间,使用成本和组件可视化质量,培训质量和时间是方法中的重要变量。提出了使用词典优化方法或标准的线性卷积,从而获得最终盖架构的最佳解决方案。该拟议的组件选择方法具有多种优点,与经典方法相比:获得的估计的更大客观性,更好的开发和进一步的软件实现自动化。因此,该方法解决了选择ATC可视化组件的问题。该研究的重要性是开发原始算法和数学软件,用于选择ATC可视化组件的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号