首页> 外文期刊>Journal of Computing and Information Science in Engineering >Image Data-Based Surface Texture Characterization and Prediction Using Machine Learning Approaches for Additive Manufacturing
【24h】

Image Data-Based Surface Texture Characterization and Prediction Using Machine Learning Approaches for Additive Manufacturing

机译:使用机器学习方法进行增材制造的基于图像数据的表面纹理表征和预测

获取原文
获取原文并翻译 | 示例

摘要

The increase in the use of metal additive manufacturing (AM) processes in major industries like aerospace, defense, and electronics indicates the need for maintaining a tight quality control. A quick, low-cost, and reliable online surface texture measurement and verification system are required to improve its industrial adoption. In this paper, a comprehensive investigation of the surface characteristics of Ti-6Al-4V selective laser melted (SLM) parts using image texture parameters is discussed. The image texture parameters extracted from the surface images using first-order and second-order statistical methods, and measured 3D surface roughness parameters are used for characterizing the SLM surfaces. A comparative study of roughness prediction models developed using various machine learning approaches is also presented. Among the models, the Gaussian process regression (GPR) model gives an accurate prediction of roughness values with an R~2 value of more than 0.9. The test data results of all models are presented.
机译:航空航天,国防和电子等主要行业中金属增材制造(AM)工艺的使用增加,表明需要保持严格的质量控制。需要一种快速,低成本,可靠的在线表面纹理测量和验证系统来提高其工业应用率。本文讨论了使用图像纹理参数对Ti-6Al-4V选择性激光熔融(SLM)零件的表面特性进行的全面研究。使用一阶和二阶统计方法从表面图像中提取的图像纹理参数以及测量的3D表面粗糙度参数用于表征SLM表面。还介绍了使用各种机器学习方法开发的粗糙度预测模型的比较研究。在这些模型中,高斯过程回归(GPR)模型可准确预测粗糙度值,R〜2值大于0.9。给出了所有模型的测试数据结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号