首页> 外文期刊>Journal of Computing and Information Science in Engineering >Water Leakage Detection for Complex Pipe Systems Using Hybrid Learning Algorithm Based on ANFIS Method
【24h】

Water Leakage Detection for Complex Pipe Systems Using Hybrid Learning Algorithm Based on ANFIS Method

机译:基于ANFIS方法的混合学习算法在复杂管道系统漏水检测中的应用

获取原文
获取原文并翻译 | 示例

摘要

In most city water distribution systems, a considerable amount of water is lost because of leaks occurring in pipes. Moreover, an unobservable fluid leakage fault that may occur in a hazardous industrial system, such as nuclear power plant cooling process or chemical waste disposal, can cause both environmental and economical disasters. This situation generates crucial interest for industry and academia due to the financial cost related with public health risks, environmental responsibility, and energy efficiency. In this paper, to find a reliable and economic solution for this problem, adaptive neuro fuzzy inference system (ANFIS) method which consists of backpropagation and least-squares learning algorithms is proposed for estimating leakage locations in a complex water distribution system. The hybrid algorithm is trained with acceleration, pressure, and flow rate data measured through the sensors located on some specific points of the complex water distribution system. The effectiveness of the proposed method is discussed comparing the results with the current methods popularly used in this area.
机译:在大多数城市供水系统中,由于管道中发生泄漏,会损失大量的水。此外,在危险的工业系统(例如核电站的冷却过程或化学废物处理)中可能发生的不可观察到的流体泄漏故障可能导致环境和经济灾难。由于与公共卫生风险,环境责任和能源效率相关的财务成本,这种情况引起了业界和学术界的极大兴趣。为了找到一个可靠且经济的解决方案,提出了一种由反向传播和最小二乘学习算法组成的自适应神经模糊推理系统(ANFIS)方法,用于估计复杂供水系统中的泄漏位置。通过通过位于复杂水分配系统某些特定点上的传感器测得的加速度,压力和流量数据来训练混合算法。通过将结果与该领域中流行的当前方法进行比较,讨论了所提出方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号