首页> 外文期刊>Journal of computer and system sciences >A counterexample to Thiagarajan's conjecture on regular event structures
【24h】

A counterexample to Thiagarajan's conjecture on regular event structures

机译:在常规事件结构上对蒂亚加拉党的猜想的反例

获取原文
获取原文并翻译 | 示例

摘要

We provide a counterexample to a conjecture by Thiagarajan (1996, 2002) that regular event structures correspond to event structures obtained as unfoldings of finite 1-safe Petri nets. The same counterexample is used to disprove a closely related conjecture by Badouel, Darondeau, and Raoult (1999). Using that domains of events structures are CAT(0) cube complexes, we construct our counterexample from an example by Wise (1996, 2007) of a nonpositively curved square complex whose universal cover contains an aperiodic plane. We prove that other counterexamples to Thiagarajan's conjecture arise from aperiodic 4-way deterministic tile sets of Kari and Papasoglu (1999) and Lukkarila (2009). On the positive side, using breakthrough results by Agol (2013) and Haglund and Wise (2008, 2012) from geometric group theory, we prove that Thiagarajan's conjecture holds for strongly hyperbolic regular event structures.
机译:我们向泰格拉贾班(1996,2002)提供了一个反射仪,即定期的事件结构对应于有限1安全培养网的展开的事件结构。同样的反例用于反驳Badouel,Darondeau和Raoult(1999)密切相关的猜想。使用事件结构的域是CAT(0)立方体复合物,我们通过Wise(1996,2007)的一个非模糊弯曲的方形复合物的示例构建了我们的通用覆盖包含非周期性平面的示例。我们证明,其他对抗紫杉的猜想的猜测从非周期性的4路确定性瓦片套(1999)和Lukkarila(2009年)产生。在积极的方面,使用Agol(2013)和Haglund和Wise(2008,2012)的突破结果来自几何集团理论,我们证明了蒂亚加拉剑的猜想为强双曲线常规事件结构持有。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号