首页> 外文期刊>Journal of computer security >Identifying parasitic malware as outliers by code clustering
【24h】

Identifying parasitic malware as outliers by code clustering

机译:通过代码群集识别寄生恶意软件作为异常值

获取原文
获取原文并翻译 | 示例

摘要

Injecting malicious code into benign programs is popular in spreading malware. Unfortunately, for detection, the prior knowledge about the malware, e.g., the behavior or implementation patterns, isn't always available. Our observation shows that the logic of the host program is normally unclear to parasitic malware developers, resulting in very few interactions between the host and the payloads in lots of parasitic malware. Thus we can expose the injected part by grouping the code based on the interactive relations. Particularly, we partition a target program into modules, extract the relations, cluster the modules and further inspect the outliers to identify such malware. In this paper, we design a two-stage code clustering-based approach to detecting two representative types of malware, the UEFI rootkits and the piggybacked Android applications. Parasitic malware is reported when (1) any outlier in a UEFI firmware shows a relatively long distance to the largest cluster, or (2) the largest outlier distance exceeds zero in an Android application, i.e., multiple cluster exist after re-clustering outliers. We evaluate the approach on 35 pairs of benign/infected UEFI samples we do our best to get and achieve an overall F1 score. of 100%. Applying the learned threshold to 50 other benign firmwares, we identify them without false positives. In addition, our evaluation on 1079 pairs of Android applications, shows an F1 score of 90.66% when the third-party libraries are eliminated and a score of 87.36% if we keep the popular third-party libraries, demonstrating the effectiveness of the approach.
机译:将恶意代码注入良性程序在传播恶意软件中流行。不幸的是,对于检测,关于恶意软件的先验知识,例如,行为或实现模式并不总是可用的。我们的观察结果表明,主机程序的逻辑通常不清楚寄生恶意软件开发人员,导致主机之间的相互作用很少以及许多寄生恶意软件中的有效载荷。因此,我们可以通过基于交互式关系分组代码来公开注入的部分。特别地,我们将目标程序分区为模块,提取关系,群集模块并进一步检查异常值以识别此类恶意软件。在本文中,我们设计了一种基于两阶段代码集群的方法来检测两个代表性的恶意软件,UEFI rootkits和捎带的Android应用程序。报告寄生恶意软件当(1)UEFI固件中的任何异常值显示到最大群集相对较长的距离,或(2)在Android应用程序中,最大的异常距离超过零,即在重新聚类异常值之后存在多个群集。我们评估了35对良性/感染的UEFI样本的方法我们尽最大努力获得并达到整体F1得分。 100%。将学习的阈值应用于50个其他良性的Firmwares,我们没有误报的情况。此外,我们在1079对Android应用程序的评估显示,如果我们将第三方图书馆淘汰,则展示了90.66%的F1得分,如果我们保留了流行的第三方图书馆,则得分为87.36%,证明了这种方法的有效性。

著录项

  • 来源
    《Journal of computer security》 |2020年第2期|157-189|共33页
  • 作者单位

    Renmin Univ China Sch Informat Beijing Peoples R China|Renmin Univ China MOE Key Lab DEKE Beijing Peoples R China;

    Renmin Univ China Sch Informat Beijing Peoples R China|Renmin Univ China MOE Key Lab DEKE Beijing Peoples R China;

    Renmin Univ China Sch Informat Beijing Peoples R China|Renmin Univ China MOE Key Lab DEKE Beijing Peoples R China;

    Renmin Univ China Sch Informat Beijing Peoples R China|Renmin Univ China MOE Key Lab DEKE Beijing Peoples R China;

    Renmin Univ China Sch Informat Beijing Peoples R China|Renmin Univ China MOE Key Lab DEKE Beijing Peoples R China;

    Renmin Univ China Sch Informat Beijing Peoples R China|Renmin Univ China MOE Key Lab DEKE Beijing Peoples R China;

  • 收录信息 美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Parasitic malware; outlier; code clustering; UEFI rootkit; piggybacked Android application;

    机译:寄生恶意软件;异常值;代码集群;UEFI rootkit;捎带Android应用程序;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号