首页> 外文期刊>Expert systems with applications >Identifying meaningful clusters in malware data
【24h】

Identifying meaningful clusters in malware data

机译:在恶意软件数据中识别有意义的群集

获取原文
获取原文并翻译 | 示例

摘要

Finding meaningful clusters in drive-by-download malware data is a particularly difficult task. Malware data tends to contain overlapping clusters with wide variations of cardinality. This happens because there can be considerable similarity between malware samples (some are even said to belong to the same family), and these tend to appear in bursts. Clustering algorithms are usually applied to normalised data sets. However, the process of normalisation aims at setting features with different range values to have a similar contribution to the clustering. It does not favour more meaningful features over those that are less meaningful, an effect one should perhaps expect of the data pre-processing stage. In this paper we introduce a method to deal precisely with the problem above. This is an iterative data pre-processing method capable of aiding to increase the separation between clusters. It does so by calculating the within-cluster degree of relevance of each feature, and then it uses these as a data rescaling factor. By repeating this until convergence our malware data was separated in clear clusters, leading to a higher average Silhouette width.
机译:在逐行下载恶意软件数据中找到有意义的群集是一个特别困难的任务。恶意软件数据往往包含具有广泛变异的基数的重叠簇。这发生了因为恶意软件样本之间可能存在相当大的相似性(有些人甚至常常认为属于同一家族),并且这些往往会出现在爆发中。群集算法通常应用于归一化数据集。但是,归一化过程旨在设置具有不同范围值的特征,以对聚类具有类似的贡献。它对那些不太有意义的人来说,这不赞成更有意义的特征,这是一个应该期望数据预处理阶段的效果。在本文中,我们介绍一种恰恰在上面的问题进行处理的方法。这是一种能够触及增加簇之间的分离的迭代数据预处理方法。它通过计算每个特征的簇内相关性的群集程度来实现,然后它将其作为数据重构因子。通过重复这一点直到融合我们的恶意软件数据在清除集群中分离,导致平均剪影宽度更高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号