首页> 外文期刊>Journal of computational science >Non-intrusive polynomial chaos methods for uncertainty quantification in wave problems at high frequencies
【24h】

Non-intrusive polynomial chaos methods for uncertainty quantification in wave problems at high frequencies

机译:高频波问题的不侵入式多项式混沌方法

获取原文
获取原文并翻译 | 示例

摘要

Numerical solutions of wave problems are often influenced by uncertainties generated by a lack of knowledge of the input values related to the domain data and/or boundary conditions in the mathematical equations used in the modeling. Conventional methods for uncertainty quantification in modeling waves constitute severe chal-lenges due to the high computational costs especially at high frequencies/wavenumbers. For a given accuracy and a high wavenumber it is necessary to perform a mesh convergence study by refining the discretization of the computational domain with an increased resolution, which leads to increasing the number of degrees of freedom at a much higher rate than the wavenumber. This effect also known as the pollution error often limits the computations to relatively small values of the wavenumber. To estimate the uncertainties, many model evaluations are required, but only a single surrogate model is created in the process. In the present work, we propose the use of a non-intrusive spectral projection applied to a finite element framework with enriched basis functions for the uncertainty quantification of waves at high frequencies. The method integrates (i) the partition of unity finite element method for effectively computing the solutions of waves at high frequencies; and (ii) a non-intrusive spectral projection for effectively propagating random wavenumbers that encode uncertainties in the wave problems. Compared to the conventional finite element methods, the proposed method is demonstrated to reduce the total cost of accurately computing uncertainties in waves with high values of the wavenumber. Numerical results are presented for two sets of numerical tests. First, the interference of plane waves in a squared domain and then a wave scattering by a circular cylinder are studied at high wavenumbers. Comparisons to the Monte Carlo simulations and the regression based polynomial chaos expansion confirm the computational effectiveness of the proposed approach.
机译:波问题的数值解通常受到缺乏了解建模中使用的数学方程中的域数据和/或边界条件相关的输入值产生的不确定性的影响。由于高频率/波数,所造型波形模型波中的不确定度量的常规方法构成严重的Chal-Liges。对于给定的准确性和高波纹,需要通过提高计算域的离散化来执行网格融合研究,该分辨率增加,这导致以比波数更高的速率增加自由度的数量。这种效果也称为污染误差通常将计算限制为波数的相对较小的值。为了估算不确定性,需要许多模型评估,但在过程中只创建一个代理模型。在本作工作中,我们建议使用应用于有限元框架的非侵入式光谱投影,其具有丰富的基函数,用于高频率下波的不确定度量。该方法集成(i)统一有限元方法的分区,以有效地计算高频波的溶液; (ii)一种非侵入式光谱投影,用于有效地传播在波问题中编码不确定性的随机波数。与传统的有限元方法相比,所提出的方法经证据了降低了在具有高值的波浪中精确计算波浪中的不确定性的总成本。为两组数值测试提供了数值结果。首先,在高比瓦格中研究了平面波在平方域中的平面波的干扰,然后通过圆筒散射的波散射。对蒙特卡罗模拟的比较和基于回归的多项式混沌扩展证实了所提出的方法的计算效果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号