首页> 外文期刊>Journal of computational science >Function optimization algorithm based on SIRQV epidemic dynamic model
【24h】

Function optimization algorithm based on SIRQV epidemic dynamic model

机译:基于SIRQV流行病动力学模型的功能优化算法

获取原文
获取原文并翻译 | 示例

摘要

To solve some complicated function optimization problems, the SIRQV algorithm is constructed based on the SIRQV epidemic model. The algorithm supposes that some animal individuals exist in an ecosystem; each individual is characterized by a number of features; an infectious disease exists in the ecosystem and spreads among individuals, the disease attacks a part of features of an individual at each time. Each infected individual may pass through such states as susceptibility (S), infection (I), recovery (R), quarantine (Q) and vaccination (V), which can synthetically decide the physique strength of an individual. Individuals in the algorithm have 5 states such as S, I, R, Q and V, and 13 state transitions, each of which is equivalent to an operator. the 13 operators are logically organized together by the disease transmission logic of the SIRQV epidemic model so as to form a good cooperation and sufficient information exchange among individuals. The algorithm uses the activation, average, combination, reinforcement and assimilation operator to exchange feature information among individuals. The reinforcement operator transfers feature information from some strong individuals with higher individual physique index (IPI) to a weak individual with lower IPI index so as to make the latter grow better; the average operator ensures an individual to obtain average feature information from other individuals so as to reduce the probability that the individual drops into local optima; the activation operator expands an individual's search scope by increasing its vitality; the combination operator has the characteristics of both the activation operator and the average operator; the assimilation operator enables the search to possess of jumping ability along dimension direction; the REINIT operator has exploration and exploitation ability to overcome sticky state of individuals and enhance precision of global optima; the growth operator enables the algorithm to converge globally. Results show that the algorithm has characteristics of strong search capability and global convergence, and has a high convergence speed for some complicated function optimization problems, especially for some function optimization problems with high condition number. (C) 2015 Elsevier B.V. All rights reserved.
机译:为了解决一些复杂的功能优化问题,基于SIRQV流行模型构造了SIRQV算法。该算法假设生态系统中存在一些动物个体。每个人都有许多特征;传染病存在于生态系统中,并在个体之间传播,每次都侵袭个人特征的一部分。每个受感染的个体可能会经历易感性(S),感染(I),恢复(R),检疫(Q)和疫苗接种(V)等状态,这些状态可以综合决定个体的体格强度。该算法中的个人具有5个状态,例如S,I,R,Q和V,以及13个状态转换,每个状态转换都等效于一个运算符。 SIRQV流行病模型的疾病传播逻辑将13个操作员逻辑地组织在一起,从而在个人之间形成良好的合作和充分的信息交换。该算法使用激活,平均,组合,增强和同化运算符在个人之间交换特征信息。增强算子将特征信息从一些具有较高个人体质指数(IPI)的强壮个体转移到具有较低IPI指数的弱者,从而使后者成长更好;普通算子确保个体从其他个体获得平均特征信息,以降低个体陷入局部最优的可能性;激活运营商通过增加个人的活力来扩大其搜索范围;组合算子具有激活算子和平均算子的特征;同化运算符使搜索具有沿维度方向的跳跃能力; REINIT运营商具有探索和开发能力,可以克服个人的黏性状态并提高全局最优的精度;增长算子使算法能够全局收敛。结果表明,该算法具有较强的搜索能力和全局收敛性,对于一些复杂的函数优化问题,尤其是对于条件数较多的函数优化问题,收敛速度较高。 (C)2015 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号