首页> 外文期刊>Journal of computational science >TSIRM: A two-stage iteration with least-squares residual minimization algorithm to solve large sparse linear and nonlinear systems
【24h】

TSIRM: A two-stage iteration with least-squares residual minimization algorithm to solve large sparse linear and nonlinear systems

机译:TSIRM:具有最小二乘残差最小化算法的两阶段迭代,用于解决大型稀疏线性和非线性系统

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a two-stage iterative algorithm is proposed to improve the convergence of Krylov based iterative methods, typically those of GMRES variants. The principle of the proposed approach is to build an external iteration over the Krylov method, and to frequently store its current residual (at each GMRES restart for instance). After a given number of outer iterations, a least-squares minimization step is applied on the matrix composed by the saved residuals, in order to compute a better solution and to make new iterations if required. It is proven that the proposal has the same convergence properties as the inner embedded method itself. Several experiments have been performed using the PETSc toolkit (using default parameters in the absence of detail) to solve linear and nonlinear problems. They show good speedups compared to GMRES with up to 16,394 cores with different preconditioners. (C) 2016 Elsevier B.V. All rights reserved.
机译:本文提出了一种两阶段迭代算法,以提高基于Krylov的迭代方法(通常是GMRES变量的迭代方法)的收敛性。提出的方法的原理是在Krylov方法之上构建外部迭代,并频繁存储其当前残差(例如,在每次GMRES重新启动时)。在给定数量的外部迭代之后,将最小二乘最小化步骤应用于由保存的残差组成的矩阵,以计算更好的解决方案并在需要时进行新的迭代。事实证明,该提议具有与内部嵌入方法本身相同的收敛性。使用PETSc工具包进行了几次实验(在没有详细信息的情况下使用默认参数)来解决线性和非线性问题。与具有多达16,394个内核和不同预处理器的GMRES相比,它们显示出良好的加速性能。 (C)2016 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号