首页> 外文期刊>Journal of computational science >Detecting the missing links in social networks based on utility analysis
【24h】

Detecting the missing links in social networks based on utility analysis

机译:基于效用分析的社交网络缺失链接检测

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes a new model for detecting missing links in social networks. A utility function is introduced that considers the node attributes as well as the network structure for the individuals to decide whether to form a link. At the same time, logistic regression is also adopted to estimate the parameters of the algorithm based on the observed network. Furthermore, this paper validates this new missing link detection method in online social networks that were established from Facebook via comparison analysis. The results demonstrate that our method outperforms other algorithms in detecting the existent links in the original network. We also perform scalability analysis with respect to our method, analyze the complexity of method and attempt to reduce our method's complexity by deleting some of the parameters. Moreover, this study also applies our method to network evolution analysis, and it enables us to uncover the factors that promote network evolution. (C) 2016 Elsevier B.V. All rights reserved.
机译:本文提出了一种用于检测社交网络中缺失链接的新模型。引入了一种实用程序功能,该功能考虑节点属性以及网络结构以供个人决定是否形成链接。同时,还采用逻辑回归来根据观测网络估算算法参数。此外,本文通过比较分析验证了从Facebook建立的在线社交网络中这种新的缺失链接检测方法。结果表明,在检测原始网络中存在的链接时,我们的方法优于其他算法。我们还针对我们的方法执行可伸缩性分析,分析方法的复杂性,并尝试通过删除一些参数来降低方法的复杂性。此外,本研究还将我们的方法应用于网络演化分析,并使我们能够发现促进网络演化的因素。 (C)2016 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号