首页> 外文期刊>Journal of computational science >Optimizing feature selection in video-based recognition using Max-Min Ant System for the online video contextual advertisement user-oriented system
【24h】

Optimizing feature selection in video-based recognition using Max-Min Ant System for the online video contextual advertisement user-oriented system

机译:使用Max-Min Ant系统针对在线视频上下文广告用户导向系统优化基于视频的识别中的特征选择

获取原文
获取原文并翻译 | 示例

摘要

The online-advertising has been grown to focus on multimedia interactive model with through the Internet. Our Online Video Advertisement User-oriented (OVAU) system combined the machine learning model for face recognition from camera, multimedia streaming protocols, and video meta-data storage technology. face recognition (FR) is an importance phase which can to enhance the performance of our system. Feature Selection (FS) problem for FR is solved by MMAS-FS algorithms based-on PZMI and DWT features. The features set are represented by digraph G(E, V). Each node used to show the features, and the ability to choose a combination of features is presented the edges connecting between two adjacent nodes. The heuristic information extracted from the selected feature vector as ant's pheromone. The feature subset optimal is selected by the shortest length features and best presentation of classifier. The best subset used to classify the face recognition used Nearest Neighbor Classifier (NNC). The experiments were analyzed on FS shows that our algorithm can be easily applied without the priori information of features. The execution assessed of our calculation is more effective than previous approaches for Video-based recognition based on FS problem. (C) 2016 Elsevier B.V. All rights reserved.
机译:在线广告已经成长为通过互联网专注于多媒体交互模型。我们的面向用户的在线视频广告系统(OVAU)结合了机器学习模型,用于通过摄像头,多媒体流协议和视频元数据存储技术进行面部识别。人脸识别(FR)是一个重要阶段,可以增强我们系统的性能。 FR的特征选择(FS)问题是通过基于PZMI和DWT特征的MMAS-FS算法解决的。特征集由有向图G(E,V)表示。用于显示要素的每个节点以及选择要素组合的能力都会在两个相邻节点之间连接的边缘处呈现。从所选特征向量中提取的启发式信息作为蚂蚁的信息素。通过最短长度的特征和分类器的最佳表示来选择最佳的特征子集。用于分类人脸识别的最佳子集使用最近邻分类器(NNC)。在FS上进行的实验分析表明,该算法无需先验特征即可轻松应用。我们的计算执行评估比以前的基于FS问题的基于视频的识别方法更有效。 (C)2016 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号