首页> 外文期刊>Journal of computational science >Reduced order models for pricing European and American options under stochastic volatility and jump-diffusion models
【24h】

Reduced order models for pricing European and American options under stochastic volatility and jump-diffusion models

机译:随机波动和跳跃扩散模型下的欧式和美式期权定价的降阶模型

获取原文
获取原文并翻译 | 示例

摘要

European options can be priced by solving parabolic partial(-integro) differential equations under stochastic volatility and jump-diffusion models like the Heston, Merton, and Bates models. American option prices can be obtained by solving linear complementary problems (LCPs) with the same operators. A finite difference discretization leads to a so-called full order model (EOM). Reduced order models (ROMs) are derived employing proper orthogonal decomposition (POD). The early exercise constraint of American options is enforced by a penalty on subset of grid points. The presented numerical experiments demonstrate that pricing with ROMs can be orders of magnitude faster within a given model parameter variation range. (C) 2017 Elsevier B.V. All rights reserved.
机译:可以通过在随机波动率和跳跃扩散模型(例如Heston,Merton和Bates模型)下求解抛物线偏(-整数)微分方程来定价欧式期权。美国期权价格可以通过使用相同的运营商解决线性互补问题(LCP)来获得。有限差分离散化导致所谓的全阶模型(EOM)。使用适当的正交分解(POD)导出降阶模型(ROM)。美式期权的提前行使约束是通过对网格点子集进行惩罚来强制执行的。提出的数值实验表明,在给定的模型参数变化范围内,ROM的定价可以快几个数量级。 (C)2017 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号