首页> 外文期刊>Journal of computational science >A hybrid optimizer based on firefly algorithm and particle swarm optimization algorithm
【24h】

A hybrid optimizer based on firefly algorithm and particle swarm optimization algorithm

机译:基于萤火虫算法和粒子群算法的混合优化器

获取原文
获取原文并翻译 | 示例

摘要

As two widely used evolutionary algorithms, particle swarm optimization (PSO) and firefly algorithm (FA) have been successfully applied to diverse difficult applications. And extensive experiments verify their own merits and characteristics. To efficiently utilize different advantages of PSO and FA, three novel operators are proposed in a hybrid optimizer based on the two algorithms, named as FAPSO in this paper. Firstly, the population of FAPSO is divided into two sub-populations selecting FA and PSO as their basic algorithm to carry out the optimization process, respectively. To exchange the information of the two sub-populations and then efficiently utilize the merits of PSO and FA, the sub-populations share their own optimal solutions while they have stagnated more than a predefined threshold. Secondly, each dimension of the search space is divided into many small-sized sub-regions, based on which much historical knowledge is recorded to help the current best solution to carry out a detecting operator. The purposeful detecting operator enables the population to find a more promising sub-region, and then jumps out of a possible local optimum. Lastly, a classical local search strategy, i.e., BEGS Quasi-Newton method, is introduced to improve the exploitative capability of FAPSO. Extensive simulations upon different functions demonstrate that FAPSO is not only outperforms the two basic algorithm, i.e., FA and PSO, but also surpasses some state-of-the-art variants of FA and PSO, as well as two hybrid algorithms. (C) 2017 Elsevier B.V. All rights reserved.
机译:作为两种广泛使用的进化算法,粒子群优化(PSO)和萤火虫算法(FA)已成功应用于各种困难的应用程序。大量的实验证明了它们的优缺点。为了有效利用PSO和FA的不同优势,在基于这两种算法的混合优化器中提出了三种新颖的算子,即FAPSO。首先,将FAPSO的种群分为两个子种群,分别选择FA和PSO作为其基本算法来进行优化。为了交换两个子群体的信息,然后有效地利用PSO和FA的优点,这些子群体共享了自己的最佳解决方案,而它们的停滞程度超过了预定义的阈值。其次,将搜索空间的每个维度划分为许多小的子区域,在这些子区域上记录了大量的历史知识,以帮助当前的最佳解决方案来执行检测操作员。有目的的检测算子使种群能够找到更有希望的子区域,然后跳出可能的局部最优值。最后,引入经典的局部搜索策略,即BEGS拟牛顿法,以提高FAPSO的开发能力。对不同功能的广泛仿真表明,FAPSO不仅优于两种基本算法,即FA和PSO,而且还超越了FA和PSO的一些最新变体,以及两种混合算法。 (C)2017 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Journal of computational science》 |2018年第5期|488-500|共13页
  • 作者单位

    East China Jiaotong Univ, Sch Software, Nanchang 330013, Jiangxi, Peoples R China;

    East China Jiaotong Univ, Sch Econ & Management, Nanchang 330013, Jiangxi, Peoples R China;

    Wuhan Univ, Sch Comp, Wuhan 430079, Hubei, Peoples R China;

    East China Jiaotong Univ, Sch Software, Nanchang 330013, Jiangxi, Peoples R China;

    East China Jiaotong Univ, Sch Software, Nanchang 330013, Jiangxi, Peoples R China;

    East China Jiaotong Univ, Sch Software, Nanchang 330013, Jiangxi, Peoples R China;

    East China Jiaotong Univ, Sch Software, Nanchang 330013, Jiangxi, Peoples R China;

    East China Jiaotong Univ, Sch Software, Nanchang 330013, Jiangxi, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Firefly algorithm; Particle swarm optimization; Knowledge-based detecting; Local search operator;

    机译:Firefly算法;粒子群优化;基于知识的检测;本地搜索算子;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号