首页> 外文期刊>Journal of computational science >High-Performance Correlation and Mapping Engine for rapid generating brain connectivity networks from big fMRI data
【24h】

High-Performance Correlation and Mapping Engine for rapid generating brain connectivity networks from big fMRI data

机译:高性能关联和映射引擎,可从大型fMRI数据快速生成大脑连接网络

获取原文
获取原文并翻译 | 示例

摘要

Brain connectivity networks help physicians better understand the neurological effects of certain diseases and make improved treatment options for patients. Seed-based Correlation Analysis (SCA) of Functional Magnetic Resonance Imaging (fMRI) data has been used to create the individual brain connectivity networks. However, an outstanding issue is the long processing time to generate full brain connectivity maps. With close to a million individual voxels in a typical fMRI dataset, the number of calculations involved in a voxel-by-voxel SCA becomes very high. With the emergence of the dynamic time-varying functional connectivity analysis, the population-based studies, and the studies relying on real-time neurological feedbacks, the need for rapid processing methods becomes even more critical. This work aims to develop a new method which produces high-resolution brain connectivity maps rapidly. The new method accelerates the correlation processing by using an architecture that includes clustered FPGAs and an efficient memory pipeline, which is termed High-Performance Correlation and Mapping Engine (HPCME). The method has been tested with datasets from the Human Connectome Project. The preliminary results show that HPCME with four FPGAs can improve the SCA processing speed by a factor of 27 or more over that of a PC workstation with a multicore CPU. (C) 2018 Elsevier B.V. All rights reserved.
机译:大脑连接网络可帮助医生更好地了解某些疾病的神经系统效果,并为患者提供更好的治疗选择。功能性磁共振成像(fMRI)数据的基于种子的相关分析(SCA)已用于创建单个大脑连接网络。但是,一个突出的问题是生成完整的大脑连接图的处理时间较长。在典型的fMRI数据集中有近一百万个个体体素,逐个体素SCA所涉及的计算数量变得非常高。随着动态时变功能连接分析,基于人群的研究以及依赖实时神经学反馈的研究的出现,对快速处理方法的需求变得更加关键。这项工作旨在开发一种新方法,可以快速生成高分辨率的大脑连接图。该新方法通过使用一种架构来加速相关处理,该架构包括群集的FPGA和高效的内存管道,该架构被称为高性能关联和映射引擎(HPCME)。该方法已通过Human Connectome Project的数据集进行了测试。初步结果表明,与具有多核CPU的PC工作站相比,具有四个FPGA的HPCME可以将SCA处理速度提高27倍以上。 (C)2018 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号