首页> 外文期刊>Journal of computational science >Ant colony optimization with partial-complete searching for attribute reduction
【24h】

Ant colony optimization with partial-complete searching for attribute reduction

机译:通过部分完全搜索进行蚁群优化以减少属性

获取原文
获取原文并翻译 | 示例

摘要

The time-cost-sensitive attribute reduction problem is more challenging than the classical reduct problem since the optimal solution is sparser. Ant colony optimization (ACO) is an effective approach to this problem. However, the efficiency is unsatisfactory since each ant needs to search for a complete solution. In this paper, we propose a partial-complete searching technique for ACO and design the APC algorithm. Partial searching is undertaken by pioneer ants through selecting only a few attributes to save time, while complete searching is undertaken by harvester ants for complete solutions. Experiments are undertaken on seven real-world and a set of artificial datasets with various settings of costs. Compared with two bio-inspired and two greedy algorithms, APC is more efficient while obtaining the same level of quality metrics. The APC algorithm can be also extended for other combinatorial optimization problems. (C) 2017 Elsevier B.V. All rights reserved.
机译:时间成本敏感的属性减少问题比经典的归约问题更具挑战性,因为最优解决方案较为稀疏。蚁群优化(ACO)是解决此问题的有效方法。但是,效率并不令人满意,因为每个蚂蚁都需要寻找完整的解决方案。本文提出了一种针对ACO的部分完全搜索技术,并设计了APC算法。先锋蚂蚁通过仅选择一些属性来节省时间来进行部分搜索,而收割蚁则通过完全搜索来寻找完整的解决方案。在七个现实世界和一组具有各种成本设置的人工数据集上进行了实验。与两种生物启发算法和两种贪婪算法相比,APC在获得相同水平的质量指标时效率更高。 APC算法也可以扩展到其他组合优化问题。 (C)2017 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号