首页> 外文期刊>Journal of computational science >Effective surveillance and predictive mapping of mosquito-borne diseases using social media
【24h】

Effective surveillance and predictive mapping of mosquito-borne diseases using social media

机译:使用社交媒体对蚊媒疾病进行有效监视和预测性定位

获取原文
获取原文并翻译 | 示例

摘要

Healthcare Emergency Management involves preventing, handling, organizing and controlling of specific events and in response to emergency situations. A social media based mosquito-borne disease surveillance and outbreak management using spatial and temporal information which help in identification, characterization, and modeling of user behavioral patterns on the web have been presented through this paper. The proposed predictive mapping based on geo-tagging data has a significant impact on preventing and tracking mosquito-borne disease in the specific area with limited resources. The tracking of real-time public sentiments provides an early discovery or alarming related to outbreak. Latent Dirichlet allocation (LDA) based topic modeling techniques have been applied to filter out relevant topics related to symptoms, prevention and fear. The two steps fine-grained classifications of data have been performed using Naive Bayes and Support Vector machine. The proposed framework focused on alternative methods of analysis and visualization of user's opinions that do not depend upon the assumption of normality. A novel intelligent surveillance process model has been presented which help government agencies for proper management of time and resources. The utilization of standard kernel density estimate (KDE) with important factors derived from Twitter and RSS feeds have been presented for predictive mapping. The model uses latent Dirichlet allocation for identification of coherent topics from collected data set at a particular interval. This model has been applied to predict the occurrence of mosquito-borne disease in India. (C) 2017 Elsevier B.V. All rights reserved.
机译:医疗保健紧急情况管理涉及预防,处理,组织和控制特定事件以及响应紧急情况。通过本文,提出了一种基于社交媒体的蚊媒疾病监测和爆发管理方法,该方法利用时空信息来帮助识别,表征和建模网络上的用户行为模式。提议的基于地理标记数据的预测性制图对于在资源有限的特定区域中预防和跟踪蚊媒疾病具有重大影响。实时跟踪公众情绪可提供与爆发有关的早期发现或预警。基于潜在狄利克雷分配(LDA)的主题建模技术已应用于过滤与症状,预防和恐惧相关的主题。使用朴素贝叶斯和支持向量机已经完成了数据的两步细粒度分类。拟议的框架侧重于不依赖于正常性假设的用户意见分析和可视化的替代方法。提出了一种新颖的智能监视过程模型,该模型可帮助政府机构正确管理时间和资源。已经提出了利用标准内核密度估计(KDE)以及从Twitter和RSS feed派生的重要因素进行预测性映射的方法。该模型使用潜在的Dirichlet分配以特定时间间隔从收集的数据集中识别一致的主题。该模型已用于预测印度蚊媒传播疾病的发生。 (C)2017 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号