首页> 外文期刊>Journal of computational science >Symmetry-preserving finite-difference discretizations of arbitrary order on structured curvilinear staggered grids
【24h】

Symmetry-preserving finite-difference discretizations of arbitrary order on structured curvilinear staggered grids

机译:结构曲线交错网格上任意阶的保持对称性的有限差分离散化

获取原文
获取原文并翻译 | 示例

摘要

Symmetry-preserving (mimetic) discretization aims to preserve certain properties of a continuous differential operator in its discrete counterpart. For these discretizations, stability and (discrete) conservation of mass, momentum and energy are proven in the same way as for the original continuous model.This paper presents a new finite-difference symmetry-preserving space discretization. Boundary conditions and time integration are not addressed. The novelty is that it combines arbitrary order of convergence, orthogonal and non-orthogonal structured curvilinear staggered meshes, and the applicability to a wide variety of continuous operators, involving chain rules and nonlinear advection, as illustrated by the shallow-water equations. Experiments show exact conservation and convergence corresponding to expected order. (C) 2019 Elsevier B.V. All rights reserved.
机译:保持对称(模仿)的离散化旨在将连续微分算子的某些属性保留在其离散对应物中。对于这些离散化,以与原始连续模型相同的方式证明了质量,动量和能量的稳定性和(离散)守恒。本文提出了一种新的具有有限差分对称性的空间离散化方法。边界条件和时间积分未解决。新颖之处在于,它结合了任意阶的收敛性,正交和非正交结构的曲线交错网格,以及适用于涉及链规则和非线性对流的各种连续算子,如浅水方程式所示。实验表明,精确的守恒和收敛与预期的顺序相对应。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号