首页> 外文期刊>Journal of computational science >Isogeometric spectral approximation for elliptic differential operators
【24h】

Isogeometric spectral approximation for elliptic differential operators

机译:椭圆微分算子的等几何谱近似

获取原文
获取原文并翻译 | 示例

摘要

We study the spectral approximation of a second-order elliptic differential eigenvalue problem that arises from structural vibration problems using isogeometric analysis. In this paper, we generalize recent work in this direction. We present optimally-blended quadrature rules for the isogeometric spectral approximation of a diffusion-reaction operator with both Dirichlet and Neumann boundary conditions. The blended rules improve the accuracy of the isogeometric approximation. In particular, the optimal blending rules minimize the dispersion error and lead to two extra orders of super-convergence in the eigenvalue error. Various numerical examples (including the Schrodinger operator for quantum mechanics) in one and three spatial dimensions demonstrate the performance of the blended rules. (C) 2018 Elsevier B.V. All rights reserved.
机译:我们使用等几何分析研究了由结构振动问题引起的二阶椭圆微分特征值问题的谱近似。在本文中,我们概括了这一方向上的最新工作。我们为Dirichlet和Neumann边界条件的扩散反应算子的等几何谱近似提供最佳混合正交规则。混合规则提高了等几何近似的准确性。特别地,最佳混合规则使色散误差最小化,并导致特征值误差中的两个额外的超收敛阶数。在一个和三个空间维度上的各种数值示例(包括用于量子力学的Schrodinger算符)说明了混合规则的性能。 (C)2018 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号