首页> 外文期刊>Journal of computational science >Uncertainty quantification of computational coronary stenosis assessment and model based mitigation of image resolution limitations
【24h】

Uncertainty quantification of computational coronary stenosis assessment and model based mitigation of image resolution limitations

机译:计算性冠状动脉狭窄评估的不确定性量化和基于模型的图像分辨率限制缓解

获取原文
获取原文并翻译 | 示例

摘要

Coronary artery disease is one of the leading causes of death globally. The hallmark of this disease is the occurrence of stenosed coronary arteries which reduce blood flow to the myocardium. Severely stenosed arteries can be treated if detected, but the diagnostic procedure to assess fractional flow reserve (FFR), a quantitative measure of stenosis severity, is invasive, burdensome to the patient, and costly. Recent computational approaches estimate the severity of stenoses from simulations of coronary blood flow based on CT imagery. These methods allow for diagnosis to be made noninvasively and using fewer hospital resources; however, the predictions depend on uncertain input data and model parameters due to technical limitations and patient variability. To assess the consequences of boundary condition and input uncertainty on predictions of FFR, we developed a model of coronary blood flow. We performed uncertainty quantification and sensitivity analysis of the predictions based on uncertainties in boundary conditions, parameters, and geometric measurements. Our results identified three influential sources of uncertainty: geometric data, cardiac output, and coronary resistance during hyperemia. Further, uncertainty about the geometry of the stenosed coronary branch influences estimates much more than other geometrical data. Limitations of medical imaging contribute uncertainty to predictions as vessels below a certain threshold remain unobserved. We assessed the effects of unobserved vessels by comparing predictions based on both high and low resolution data. Moreover, we introduced a novel method that estimates flow distribution while accounting for unobserved vessels. This method improved FFR predictions in the cases considered by 50% on average. (C) 2019 Elsevier B.V. All rights reserved.
机译:冠状动脉疾病是全球范围内主要的死亡原因之一。该疾病的标志是冠状动脉狭窄,这会减少流向心肌的血液。如果检测到严重狭窄的动脉,则可以治疗,但是评估分数血流储备量(FFR)的诊断程序是一种狭窄程度的定量测量方法,具有侵入性,给患者带来负担,并且成本高昂。最近的计算方法根据基于CT图像的冠状动脉血流模拟来估计狭窄的严重程度。这些方法可以无创地进行诊断,并使用较少的医院资源。然而,由于技术限制和患者的可变性,预测依赖于不确定的输入数据和模型参数。为了评估FFR预测的边界条件和输入不确定性的后果,我们开发了冠状动脉血流模型。我们根据边界条件,参数和几何尺寸的不确定性对预测进行了不确定性量化和敏感性分析。我们的结果确定了三种不确定性的影响因素:几何数据,心输出量和充血期间的冠状动脉阻力。此外,关于狭窄冠状动脉分支的几何形状影响的不确定性要比其他几何数据大得多。医学成像的局限性导致预测的不确定性,因为低于某个阈值的血管仍未被观察到。我们通过比较基于高分辨率和低分辨率数据的预测来评估未观察到的血管的影响。此外,我们引入了一种新颖的方法,可在考虑未观察到的船只的同时估算流量分布。在考虑的情况下,该方法将FFR预测平均提高了50%。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号