首页> 外文期刊>Journal of computational science >Efficient computational strategies to learn the structure of probabilistic graphical models of cumulative phenomena
【24h】

Efficient computational strategies to learn the structure of probabilistic graphical models of cumulative phenomena

机译:高效的计算策略,以学习累积现象的概率图形模型的结构

获取原文
获取原文并翻译 | 示例

摘要

Structural learning of Bayesian Networks (BNs) is a NP-hard problem, which is further complicated by many theoretical issues, such as the I-equivalence among different structures. In this work, we focus on a specific subclass of BNs, named Suppes-Bayes Causal Networks (SBCNs), which include specific structural constraints based on Suppes' probabilistic causation to efficiently model cumulative phenomena. Here we compare the performance, via extensive simulations, of various state-of-the-art search strategies, such as local search techniques and Genetic Algorithms, as well as of distinct regularization methods. The assessment is performed on a large number of simulated datasets from topologies with distinct levels of complexity, various sample size and different rates of errors in the data. Among the main results, we show that the introduction of Suppes' constraints dramatically improve the inference accuracy, by reducing the solution space and providing a temporal ordering on the variables. We also report on trade-offs among different search techniques that can be efficiently employed in distinct experimental settings. This manuscript is an extended version of the paper "Structural Learning of Probabilistic Graphical Models of Cumulative Phenomena" presented at the 2018 International Conference on Computational Science [1]. (C) 2018 Elsevier B.V. All rights reserved.
机译:贝叶斯网络(BNs)的结构学习是一个NP难题,由于许多理论问题(例如不同结构之间的I等价性)而变得更加复杂。在这项工作中,我们专注于BN的特定子类,称为Suppes-Bayes因果网络(SBCN),其中包括基于Suppes的概率因果关系的特定结构约束,以有效地建模累积现象。在这里,我们通过广泛的模拟比较了各种最新搜索策略(例如本地搜索技术和遗传算法)以及不同正则化方法的性能。评估是对来自拓扑的大量模拟数据集执行的,这些数据集具有不同的复杂性级别,各种样本大小以及数据中的错误率。在主要结果中,我们表明,通过减少解空间并提供变量的时间顺序,Suppes约束的引入大大提高了推理准确性。我们还报告了可以在不同实验环境中有效使用的不同搜索技术之间的权衡。该手稿是在“ 2018年国际计算科学大会”上发表的论文“累积现象的概率图形模型的结构学习”的扩展版本。 (C)2018 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号