首页> 外文期刊>Journal of computational science >A hybrid fuzzy time series forecasting model based on granular computing and bio-inspired optimization approaches
【24h】

A hybrid fuzzy time series forecasting model based on granular computing and bio-inspired optimization approaches

机译:基于粒计算和生物启发优化方法的混合模糊时间序列预测模型

获取原文
获取原文并翻译 | 示例

摘要

In this article, a novel M-factors fuzzy time series (FTS) forecasting model is presented, which relies upon on the hybridization of two procedures, viz., granular computing and bio-inspired computing. In this investigation, granular computing is utilized to discretize M-factors time series data set to obtain granular intervals. These intervals are additionally used to fuzzify the time series data set. Based on fuzzified time series data set, M-factors fuzzy relations are set-up. These M-factors fuzzy relations are further utilized to acquire forecasting results. Moreover, a novel bio-inspired algorithm is proposed to enhance the forecasting accuracy. The main objective of this algorithm is to adjust the lengths of the intervals (granular and non-granular intervals) in the universe of discourse that are used in forecasting. The proposed model is verified and validated with various real world data sets. Various statistical and comparative analyzes signify that the proposed model can take far better decision with the M-factors time series data sets. Moreover, empirical analysis demonstrates that forecasting accuracy of the proposed model based on granular intervals is better than non-granular intervals.
机译:在本文中,提出了一种新颖的M因子模糊时间序列(FTS)预测模型,该模型依赖于两种过程的混合,即颗粒计算和生物启发计算。在这项研究中,利用粒度计算来离散化M因子时间序列数据集以获得粒度间隔。这些间隔还用于模糊时间序列数据集。基于模糊时间序列数据集,建立M因子模糊关系。这些M因子模糊关系可进一步用于获取预测结果。此外,提出了一种新颖的生物启发算法来提高预测的准确性。该算法的主要目的是调整用于预测的话语范围中的间隔(颗粒和非颗粒间隔)的长度。所提出的模型已通过各种现实世界的数据集进行了验证和验证。各种统计和比较分析表明,使用M因子时间序列数据集,可以对提议的模型做出更好的决策。此外,经验分析表明,基于粒度区间的模型预测精度优于非粒度区间。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号