首页> 外文期刊>Journal of Computational Physics >An inexact Newton method for fully coupled solution of the Navier-stokes equations with heat and mass transport
【24h】

An inexact Newton method for fully coupled solution of the Navier-stokes equations with heat and mass transport

机译:具有传热和传质的Navier-stokes方程完全耦合解的不精确牛顿法

获取原文
获取原文并翻译 | 示例

摘要

The solution of the governing steady transport equations for momentum, heat and mass transfer in flowing fluids can be very difficult. These difficulties arise from the nonlinear, coupled, nonsymmetric nature of the system of algebraic equations that results from spatial discretization of the PDEs. In this manuscript we focus on evaluating a proposed nonlinear solution method based on an inexact Newton method with backtracking. In this context we use a particular spatial discretization based on a pressure stabilized Petrov- Galerkin finite element formulation of the low mach number Navier-Stokes Equations with heat and mass transport.
机译:对于流动流体中的动量,热量和质量传递,控制稳态输运方程的求解可能非常困难。这些困难是由PDE的空间离散化所导致的代数方程组的非线性,耦合,非对称性质引起的。在此手稿中,我们重点评估基于带回溯的不精确牛顿法的非线性求解方法。在这种情况下,我们基于具有热和质量传递的低马赫数Navier-Stokes方程的压力稳定的Petrov-Galerkin有限元公式,使用了特定的空间离散。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号